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Abstract Soil living organisms currently exhibit complex spatial patterns at various scales. Conventional methods
for studying spatial dispersion are based on various aggregation indices or probability distribution analysis.
Since these methods do not take into account the actual location of the sampling sites, they provide no-
information on the spatial distribution at scales larger than the sampling unit size. The geostatistical analysis
is a way to analyse the spatial pattern of a variable at scales ranging from the minimum to the largest inter-
sample distance. The variogram indicates whether the variable is spatially dependent or not. If a structure
is present, the kriging local interpolation procedure provides estimates of the variable and their estimation
error. Contour mapping of these values gives accurate maps of both the variable and the reliability of the
estimated values. Kriging is a local estimation method that yields fine description of short and large-scale
structures whereas traditional interpolation procedure by trend surface analysis only describes large-scale
patterns. At a further stage, the relationship between two spatially dependent variables can be examined
by cross-variogram analysis. The latter procedure allows the study of the complex relationships that occur
either between biological variables or biological and environmental variables.

Keywords: Geostatistics, variogram, kriging, earthworm, spatial distribution, trend surface analysis.
L’outil statistique en biologie du sol. X. Analyses géostatistiques.

Résumé Les organismes du sol présentent généralement des patrons de distribution spatiale 2 divers échelles. Les
méthodes classiques d’étude de la distribution spatiale sont basées sur divers indices d’agrégation ainsi que
sur ’analyse des distributions de fréquence. Ces méthodes ne prennent pas en considération la position des
points d’échantillonnage et par conséquent n’apportent pas d’information sur la distribution spatiale des
organismes aux échelles supérieures a I'unité d’échantillonnage. L’outil géostatistique permet la description
de la distribution spatiale d’une variable & I’intérieur de I’aire d’échantillonnage. Le variogramme indique si
la variable présente une structure spatiale et dans ce cas, I’utilisation du krigeage, méthode d’interpolation
locale, fournit 2 la fois une estimation de la variable ainsi que son erreur d’estimation. Le krigeage est
une méthode d’interpolation locale autorisant une description précise des structures fines impossible a
obtenir par la méthode traditionnelle d’analyse de tendance. Les relations entre deux variables structurées
dans ’espace peuvent étre étudiées par I’analyse du covariogramme. Cette méthode permet I’étude des
relations complexes qui interviennent entre différentes variables biologiques ou entre variables biologiques
et variables environnementales.

Mots-clés : Géostatistiques, variogramme, krigeage, vers de terre, distribution spatiale, analyse de tendance.
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INTRODUCTION

Soils are highly heterogeneous environments as a
result of the large number of factors that determine
their structure and regulate their function. Following
the hierarchy theory (Allen & Starr, 1982) soils
can be seen as primarily structured by large-scale
physical processes that create large-scale structures
within which smaller scale contagious biotic processes
introduce a new level of heterogeneity.

Soil living organisms currently exhibit complex
spatial patterns at various scales. Plant parasitic
nematode populations are spatially dependent at scales
of <1 m (Rossi et al., 1995a) to 80 m (Robertson
& Freckman, 1995) or 180 m (Wallace & Hawkins,
1994). Earthworms too have characteristic patterns of
spatial distribution at scales ranging from 1 m (Rossi
J. P., unpublished) to 50 m (Poier & Richter, 1992).
These patterns are either due to internal processes
in populations or to the influence of environmental
patchiness or a combination of both effects.

Conventional methods used to assess the spatial
pattern of soil organisms basically separate three types
of distributions /. e., random, regular and aggregated
(clumped). These methods are based on quadrat counts
and can be divided in two major categories.

The first approach consists in fitting a discrete
probability distribution to sample count frequency data
and indicates whether the distribution is random or not.
In the case of clumped distributions, sample frequency
distribution often fits a negative binomial model
while random patterns lead to a Poisson distribution.
Regular patterns that follow the positive binomial
model are extremely rare in soil organisms. The
distribution parameters are estimated from frequency
table by the maximum likelihood procedure and a chi-
square goodness-of-fit is used to determine whether
the observed data significantly differ from the fitted
distribution.

A second approach is based on the computation of
various indices of dispersion measuring the degree of
non-randomness in spatial patterns. A wide range of
indices is available from the literature (Taylor, 1961;
Cancela da Fonseca, 1966; Lloyd, 1967; Chessel,
1978; Cancela da Fonseca & Stamou, 1982). Among
them, the variance to mean ratio and the Taylor’s
power law are frequently met in literature (Cancela
da Fonseca, 1966; Elliot, 1971; Boag & Topham,
1984; Ferris et al., 1990; McSorley & Dickson, 1991).
Departure from randomness of these indices can be
tested using appropriate statistics.

The negative binomial parameter or its inverse are
often used as a dispersion index provided the negative
binomial fits the data (Cancela da Fonseca, 1965;
1966; Elliot, 1971). This approach has been largely
used although Taylor et al. (1979) showed severe
ecological restrictions of that index.

However, the interpretation of the index values
often depends on the relative size of aggregates and
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sampling units: aggregation is adequately measured if
samples and aggregates are of comparable sizes. When
samples are significantly larger than aggregates, the
index measures the aggregation of smaller aggregates.
If samples are much smaller than aggregates,
aggregation cannot be demonstrated (Chessel, 1978).

Further, examination either of the indices or
frequency distributions carries limited information
since these methods do not take into account the actual
location of sampling points with respect to each other.
These approaches are de facto limited to the analysis
of the organisms distribution within the sampling
units. Assessing patterns at larger scales requires
taking into account the spatial location of sample
points inside the investigated surface. Basically, a
variable is said to be regionalized or autocorrelated
if a measure at one point carries information relative
to neighbouring points. If autocorrelation is present
among data, conventional statistics are no longer valid.
As an example, the Pearson correlation coefficient
cannot be used (Legendre, 1993) and other methods
must be applied.

Furthermore, available data sets show that biological
variables are rarely spatially independent at a
field scale of <100 m (Robertson, 1994). Thus
soil ecologists need tools to quantify the spatial
dependence over various spatial scales. Geostatistics
specifically address these issues. They constitute
a group of mathematical treatments that were
developed with the object to describe quantitatively
the spatially structured (i. e. autocorrelated) variables.
These methods Matheron (1965, 1971) have been
increasingly used in soil science since the early 80’s.

With the development and diffusion of microcom-
puter software (Robertson, 1987; Yost et al., 1989),
geostatistics have been largely used in studies of
spatial patterns of soil physico-chemical variables.
Their introduction in soil ecology is recent (Robertson,
1987, 1994; Webster & Boag, 1992; Wallace &
Hawkins, 1994; Delaville et al., 1995a, b; Robertson
& Freckman, 1995; Rossi et al., 1995a, b).

DETECTION AND DESCRIPTION OF SPATIAL
STRUCTURES BY GEOSTATISTICS

Geostatistical analysis is a two-step procedure. First,
the spatial structure of the variable is examined with
the semi-variance analysis. Once a spatial structure
has been identified and accurately described by a
suitable model, the kriging procedure provides optimal
interpolation of the variable at unsampled sites.

Semi-variance analysis and the variogram

The variogram allows the study of the autocor-
relation phenomenon as a function of the distance.
It is an univariate method limited to quantitative
variables. Before estimating the variogram, one must
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ensure that data follow the "intrinsic hypothesis” that
assumes that the differences between all pairs of points
located a given distance apart have constant mean
and variance throughout the sampled surface. This
relaxed form of stationarity assumption makes possible
the use of semi-variance analysis for ecological
studies.

However, if a large-scale structure is present it
will be picked up by the variogram and finer spatial
patterns may be masked. Large-scale spatial trends
should then be removed using regression (trend surface
analysis) prior to variogram computation. Analysing
the residuals may allow to investigate the finer
structures.

Variations of a variable that changes in a
continuous manner from point to point can be
described by a mathematical function: the semi-
variance (Equation 1).

The semi-variance () is estimated at each distance
interval & and the resulting graph of ~ against the
lag h is called the semi-variogram or variogram for
convenience. At lag h, the semi-variance is half the
expected squared difference between recorded values
a distance h apart (Equation 1).

M (h)

y(h)y=1/2M (h) Y {[Z (z:) = Z (x: + W)*} (D)

i=1

Where M (h) is the number of comparisons at lag h
and 7 (z;) and Z (x;4p) the values of that variable at
any two places separated by the lag h.

The lag h is a vector defined with both distance
and direction. Practically, the effect of direction
(anisotropy) is examined by estimating the variogram
along several directions (Burgess & Webster, 1980a).
The resulting graphs are compared and if no significant
differences are found, variations are considered as
isotropic. If not, the kriging algorithms have to be
modified (Burgess & Webster, 1980a; Webster, 1985).

A few general features of the variogram must
be mentioned. Generally curves are bounded, ~y (k)
increases with A until a certain value of A called the
range (a) after which the semi-variance is maximum
and remains constant. This semi-variance value called
the sill theoretically equals the variance of the data
set. Couples of data separated by a distance less
than the range are statistically dependent (i. e. measure
at a given point carries information on the expected
value at another point a distance lower than the range
apart). Independence between points is thus achieved
if distance separating these points is higher than the
range (Burgess & Webster, 1980a, b; Yost et al.,
1982a).

Another feature of the variogram is the “nugget
effect”. If theoretically, v(h) = 0 when A = 0, in
practice it is rarely observed. Generally the intercept
is a positive value called the nugget variance (Cj).
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This reveals the presence of a residual variation at the
shortest sampling interval.

The nugget variance is the sum of two sources
of variation: the measurement errors (also referred
to as the human nugget), and variations within the
sampling interval. The difference between the sill and
Cy is called the structural or spatial variance (C). It
is the part of total variance that can be attributed to
the spatial autocorrelation (see fig. 1). Many sample
variograms exhibit 100% nugget variance and are flat
(Wallace & Hawkins, 1994; Robertson & Freckman,
1995). This means that no spatial structure is detected.
However, changing the scale of observation may reveal
unseen patterns (Burrough, 1983).
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Figure 1. — Four common theoretical models for variograms.

Cp =nugget variance and C = structural variance.

Semi-variogram modelling

The semi-variance analysis is an attempt to fit a
mathematical function to the semi-variance values
estimated at distance interval of increasing values. The
model parameters are used in kriging interpolation
method.

Not all functions that seem to fit the observed
values will serve. The variogram function must
be “conditional negative semi-definite” (CNSD)
(Armstrong & Jabin, 1981). Since testing the positive
definiteness is tedious, geostatisticians use several
common “approved” models and eventually combine
them to provide better fit (Webster, 1985). These
models are called “authorized” functions. Figure 1
shows the most common models. There are two classes
of models: bounded models that exhibit a plateau (the
sill) and unbounded models where variance appears to
increase without limit.
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Unbounded models

The simplest unbounded model is the linear
model (fig. 1). Semi-variance increases with distance
following the linear relationship:

v (h) = Cy + wh

Where h is the distance, Cy the nugget variance and
w the slope. A straight line is fitted to the observed
values, the intercept being the nugget variance (Cp) .

Bounded models

The most common bounded model is the spherical
model (fig. 1). The function is:

3h 1 /Rh\°
’y(h)—C()-i—C{?—a’—i(a-)} for h<a
v(h)=Co+C for h>a

Where h is distance, C;y the nugget variance, C
the spatial variance (sill minus nugget variance) and
a is the range. When distance equals the range, the
semi-variance reaches the sill.

The exponential model accurately described
physico-chemical data (e.g. Yost et al., 1982a;
Voltz, 1986; Oliver & Webster, 1987) and biological
variables (nematode density, Rossi et al., 1995a).
Formula is:

v(h) = Co+ C{1 —exp (=h/r)}

r is a distance parameter that defines the spatial scale
of the variation. The sill is approached asymptotically
and there is no strict range. Nonetheless, a common
rule of thumb is to take the effective range as o’ = 37
which is the inter-sample distance at which the semi-
variance reaches approximately Cp+0.95 C (Webster,
1985) (see fig. 1).

In some occasions, the linear model may be
bounded. As distance between sample locations
increases, the semi-variance remains constant and
equal to the sum of nugget plus spatial variance. This
model is an authorized function only in one dimension
(Webster & Oliver, 1990).

Fitting procedure

Choosing and fitting a theoretical model to the
sample variogram is an important step of geostatistical
analysis (McBratney & Webster, 1986). Least squares
methods are widely used as fitting procedures. The
weight applied to each of the semi-variance estimates
is proportional to the number of couples of data
involved in that estimate (Cressie, 1985; McBratney
& Webster, 1986). Cressie (1985) proposed a fitting
procedure that takes into account the different numbers
of data pairs involved in each semi-variance estimate
and that gives more weight to estimates at smaller
distances.
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Cross-variogram

Two variables are defined as cross-correlated if
the value of one at a given location depends (in a
statistical sense) on the values of the other at nearby
locations (Myers, 1982; McBratney & Webster, 1983;
Warrick et al., 1986). Such variables are also named
coregionalized with reference to the regionalized
theory of Matheron. Cross-variogram analysis is a
spatial analysis technique in which two variables are
used with the aim to examine the spatial co-structure
occurring between them.

Thus, coregionalization and cross-variogram are
adequate tools to study inter-relationships between
physico-chemical variables, organisms and physico-
chemical variables or indeed, different species density
(Rossi R. E. et al, 1992). Let V and W be
two spatially structured variables. Their spatial
interdependence can be expressed in the cross semi-
variance estimated as:

N (h)
3V @)=V (@i+h)] [W (2:)=W (zi+h)]

=1

1
T 2N (h)

Fow (h)

Where N (h) is the number of all possible data pairs
separated by a distance h. The cross-variogram is the
plot of cross semi-variance against the distance h. It
shows the same features as those of auto-variogram
except that cross semi-variance is susceptible of being
negative if there is a negative correlation between
variables (McBratney & Webster, 1983).

Fitting theoretical model to sample cross-variogram
is done using the current procedure (Cressie, 1985)
used with auto-variogram.

Example 1: Field distribution of an earthworm
population.

To illustrate the use of the variogram we shall take
a data set collected in an African grass savanna in July
1994 (Rossi J. P., unpublished). 100 sampling points
were regularly distributed on a square grid with 5 m
side. At each sample location a 25 x 25 x 10 cm soil
monolith was taken and earthworms were handsorted.
In this example, we analyse the spatial pattern
of the earthworm Chuniodrilus zielae (Eudrilidae)
population. Count frequency was highly skewed to
left (fig. 2) and data were Ln transformed before
any computation. The transformation applied was
Ln (1 + z) since the observed earthworm density was
zero at some sampling points.

The variogram was computed with the programme
VAR5 which is part of the geostatistical package
developed by the University of Hawaii (Yost et
al., 1989). A spherical model was fitted to the
estimated variogram. Model parameters are: nugget
variance (Cy)=0.7, structural variance (C)=1.53 and
range a=23.9 m. The relative structural variance
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Figure 2. - (a) Frequency distribution of the density of Chuniodrilus
zielae (Eudrilidae); (b) Variogram of the density of Chuniodrilus
zielae (Eudrilidae) after Ln(1 + z) transformation.

(C/(C + Cyp)) is high (67.7%) and represents the
part of the variance that can be attributed to
spatial autocorrelation. The relative nugget variance
(Co/(C + Cp)) is the remaining variance (32.3%).
This unexplained spatial variability is either random
or expressed at scales below the minimum inter-sample
distance (5 m in the example). The variogram reveals
the presence of a spatial autocorrelation at a scale of
5m to ca. 24 m (the range).

Example 2: Absence of a spatial structure.

When no spatial pattern is perceived the variogram
exhibits a 100% nugget effect. The variogram
is “flat” as the semi-variance fluctuates around
sample variance; there is no structural variance.
Figure 3 represents the sample variogram for the
density of the tropical earthworm Millsonia anomala
(Megascolecid®) in a grass savanna of Cote d’Ivoire
(the sampling site and scheme are the same as in
example 1). At the scale of the investigation, the
observation of a 100% nugget variance variogram
means that the spatial distribution of M. anomala is
uniform throughout the sampled domain. However,
changing the scale of the sampling scheme may reveal
unseen patterns i. e. short-scale patterns.
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Figure 3. — Variogram of the earthworm Millsonia anomala density
showing the absence of structure (100% nugget variance).
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Example 3: Cross-correlation.

The use of the cross-variogram is illustrated with
the M. anomala data set collected in a grass savanna
(see example 2). In example 2 no consistent spatial
pattern was observed for a population of M. anomala.
However, both adult and juvenile stages produced a
spherical variogram showing the presence of spatial
patterns.

If both adults and juveniles are spatially dependent
variables while the sum appears as spatially
independent, the patterns displayed by adults and
juveniles may be opposed leading in turn to a global
“homogeneous” distribution of the species throughout
the study field.

A cross-variogram was calculated between adult
and juvenile density (fig. 4). The cross semi-
variance values and the slope of the cross-
variogram were negative, hence indicating a negative
coregionalization.
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Figure 4. — Cross-variogram for the adult versus the juvenile stage
of the earthworm Millsonia anomala.

The cross-variogram constitutes an interesting alter-
native to conventional Bravais and Pearson correlation
coefficient since the later is not applicable to spatially
dependent variables (Legendre & Troussellier, 1988;
Legendre, 1993). In soil ecology, this tool has been
used to investigate the relationships between different
plant parasitic nematode species in a sugarcane by
Rossi et al. (1995a).

Interpolation and mapping

Mapping is the starting point of many studies of
spatially structured phenomena. Maps generally derive
from samples obtained from the investigated surface
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and intermediate values are estimated by interpolation.
Contouring algorithms are used to draw maps from the
fine grid of interpolated points.

Trend surface and Kriging

Trend surface analysis consists in fitting a
polynomial equation to the x and y sample locations
by regression. The larger the order of the polynomial
the better the fit. However, these parameters become
more and more difficult to interpret ecologically.
The polynomial equation provides estimates of the
variable at unsampled sites that are used to draw
contour maps. Furthermore, residuals from measured
and estimated values can be used to draw maps
representing the variation not expressed by the
interpolated map.

Kriging is a local interpolation method that produces
more detailed map than ordinary interpolation. It
uses data points located in the vicinity of the point
where estimation is to be done and the autocorrelation
structure of the variable as described by the variogram.
Kriging provides an estimated value and the estimation
standard deviation at non-sampled sites. Punctual
kriging provides estimates for a volume exactly
equalling the one of samples while block kriging gives
estimates of the average value for a given volume,
generally several times larger than the sampling
units.

Let Z be a regionalized variable and Z (z) its
realization ‘at point z. Consider n sampling points
available in surrounding neighbourhood. It is possible
to estimate the value of Z at site x by the linear sum:

z* (.’L‘o) = Z /\i Z (:L‘i)

With ); the weights applied to each of the i recorded
values Z (z;) within the neighbourhood.

The first requirement of kriging is that estimates
are unbiased.

This means that Z* (z,) = E [Z (20)).

Consequently, weights must sum to 1:

iAi:l

i=1

In addition, the variance of the estimation error (the
kriging variance) is minimized with respect to A; that
sum to 1. .

The weights A; are derived from a set of equations
determined by variogram model parameters and the
location of sampling points relative to the point where
estimation is to be done (Webster & Burgess, 1980b;
Yost et al., 1982b).
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Figure 5. — (a) Contour map of the density of Chuniodrilus
zielae (Eudrilidae) obtained by trend surface analysis; units are
individuals/m? (b) Contour map of the residuals; units are
individuals/m?. Arrows indicate local high values of the residuals
that show the ineffectiveness of the polynomial equation to describe
the earthworm population local structures. *: sampling points.

Example 4. Mapping earthworm density by trend
surface analysis and kriging

Trend surface analysis and block kriging were
applied to the earthworm data of example 1. A 3d
order polynomial was fitted to the data (r=0.68;
p<0.01). The resulting polynomial equation was used
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Arrows indicate short-scale spatial structures that were not accounted
for by the trend surface analysis. * : sampling points.
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to estimate earthworm density at unsampled points
located on a square grid (2 m side) superimposed on
the sampling scheme. At the same location, density
was estimated by block kriging with 2 x 2 m blocks.
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Figure 5a illustrates the contour map obtained with
estimates by polynomial estimation. Figure 5b is the
map of the residuals of the regression showing the
earthworm density that is not expressed by the trend
surface map. Figure 6a represents the contour map
of the earthworm density estimated by block kriging
and figure 6b the kriging error. As data set was Log-
transformed prior to variogram computing and kriging
estimation, the estimates were back-transformed before
contour mapping. Kriging standard deviations were
left expressed in the Log scale.

The contour map obtained with estimates by
polynomial estimation (fig. 5a) is crude compared to
map from kriging estimates (fig. 6a). Only large-scale
patterns are represented with trend surface analysis
as short-scale structures (arrows in figs. 6a and 5b)
can only be described by a local estimation technique.
Since the trend surface analysis is based on a single
equation for the whole sampled surface, it cannot have
the same precision that the kriging local estimation
method may have.

Standard deviation of the estimation error (fig. 6b)
is a function of spatial distribution of data values
within the range of the variogram with respect to point
where estimation is to be done. This error term is also
dependent on the nugget variance and the number
of points involved in the interpolation (neighbours)
but independent on the observed values themselves.
It usually increases at the edges of the kriged area
(fig. 6b) because there are fewer data points involved
in the estimation. If these values have to be as reliable
as those of the centre of the kriged surface, sampling
scheme should be extended beyond the boundaries of
the area to be mapped.

CONCLUSION

Conventional methods of spatial structure analysis
of soil organisms generally use diverse indices based
on sample mean and variance. Even if some of them
give a satisfactory quantitative measurement of the
amount of aggregation, they do not allow to investigate
the true pattern within the sampled area. This task
is achieved by geostatistical analysis. The variogram
analysis allows to determine whether the variable is
autocorrelated or not. If a spatial structure is present,
kriging procedure can be used to estimate values
at unsampled points together with their associated
estimation error. Estimates can be used to draw
both contour maps of the variable and maps of the
estimation error. In addition, the cross semi-variance
analysis constitutes a way to investigate relationships
between spatially structured variables.
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