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Abstract

Classical predator–prey or host–parasitoid models often lead to spatial self-organization due to local interactions and limited dispersal

ability of the resource (prey or host) and consumers (predator or parasitoid). We hypothesized that self-organization may also arise in

soil organisms when the resource is passive and has a constant renewal rate. Earthworm density is correlated with soil properties, but soil

heterogeneity only explains a small proportion of spatial variations in earthworm densities. We hypothesized that this could be partially

due to self-organization. These two hypotheses were tested with an original model parameterized for a savannah earthworm population.

The model simulates an earthworm population divided in 1m2 cells. It is based on the assumption that fine soil aggregates constitute the

only limiting resource influencing mortality, fecundity and dispersal and that this resource is renewed according to a constant rate

independent of earthworm dynamics. Simulations lead to aggregated spatial distributions when the sensitivity of mortality or fecundity

to the availability of the limiting resource is high, and when earthworm mobility is low. Such parameters values are consistent with what

is known about earthworm biology. Applicability to different ecological systems and resulting population dynamical properties are

discussed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Earthworms are ecosystem engineers (Jones et al., 1997)
that ingest soil and feed on soil organic matter and litter
(Edwards, 2004). Since, they process huge amounts of soil,
they greatly influence soil structure and soil chemical
properties (Lavelle and Spain, 2001). Earthworm distribu-
tions, at the scale of a hectare, are never homogeneous and
often present larges patches with higher densities of
individuals (Poier and Richter, 1992; Decaëns and Rossi,
2001; Rossi, 2003; Whalen and Costa, 2003). A first
hypothesis to explain such patterns is that there are more
earthworms where soil is intrinsically more favorable.
Hence, either because individuals move to the best soil
patches or because mortality is higher in unfavorable
patches this would lead to spatial variations in earthworm
e front matter r 2007 Elsevier Ltd. All rights reserved.
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densities. However, earthworm densities are only weakly
correlated, if at all, with pre-existing spatial variations in
soil properties (Phillipson et al., 1976; Poier and Richter,
1992; Rossi et al., 1997). This suggests that other factors
than pre-existing soil heterogeneity influence earthworm
distributions. A second hypothesis is that earthworm
populations are locally self-regulated. They would decrease
the availability of a limiting resource in such a way that
when earthworm density increases their survival or
fecundity decrease. In interaction with dispersal this could
create heterogeneous spatial distributions. The first hy-
pothesis involves soil characteristics that can hardly be
changed by earthworms or only very slowly (soil texture,
soil humidity due to microtopography or total content in
organic matter). The second hypothesis is related to soil
characteristics than can be easily changed by earthworms
(soil distribution into aggregates size classes, content in the
fraction of the total organic matter pool that can be
assimilated by earthworms). This second hypothesis
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Table 1

Name and definition of the model parameters

Parameter Description Values

dmin Minimum mortality obtained when

environmental conditions are optimal

0.6

s Coefficient of the Gaussian distribution used to

simulate dispersal

[0.2,

3.0]

b Fecundity 2 or 4

ed Exponent defining the sensitivity of mortality to

soil quality

[0.02,

2.4]

es Exponent defining the sensitivity of dispersal to

soil quality

[�3, 3]

eb Exponent defining the sensitivity of fecundity to

soil quality

[0.02,

2.4]

C Quantity of fine aggregates transformed by one

M. anomala into coarse aggregates (expressed as a

percentage of soil mass)

0.301

D Quantity of coarse aggregates transformed into

fine ones by decompacting factors (expressed as a

percentage of soil mass)

5.658

All fluxes and rates are defined for a 1-year time step.
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corresponds to the assumption that aggregative spatial
distribution can appear in earthworms due to self-
organization (Rohani et al., 1997).

Self-organization in animal populations has been
pointed out by many models. The idea is that simple
mechanisms at the individual scale may lead to complex
non-random patterns at the population scale. It has been
particularly shown that non-random spatial patterns can
appear solely due to internal demographic mechanisms
without any external constraint that would impose a non-
random spatial pattern. Two main kinds of system have
been considered: predator–prey systems (de Roos et al.,
1991; Cuddington and Yodzis, 2000) and host–parasitoid
systems (Hassel and Comins, 1991). Both spatially explicit
host–parasitoid and predator–prey systems involve the
local consumption of a resource (prey or host) and its
renewal due to biological sensible mechanisms: migration
and reproduction (de Roos et al., 1991; Hassel and
Comins, 1991). In these cases, the renewal of the resource
in a local patch depends on the local density of preys (or
hosts): the number of immigrating individuals depends on
the number of preys (hosts) in the neighboring cells, and
the number of new born depends on the number of parents,
i.e. the number of surviving preys (hosts) in the focal patch.
In other words the resource is not passive.

We test here through a simulation model that self-
organization and non-random spatial distributions may
also arise, in the case of earthworms, when the resource has
a very simple dynamics, i.e. when its renewal only depends
on a fixed rate independent of the local resource
availability. Taken together, our simulation model was
used to test whether: (1) self-organization can arise in
consumer–resource systems when the resource has a
constant renewal rate, (2) such a principle can be applied
to earthworms, (3) biologically sensible parameters for
earthworm (mobility and sensitivity of life-history para-
meters to soil quality) lead to patchy distributions through
self-organization processes. Due to point 1, our model has
a theoretical value in its own right. Points 2 and 3 aimed at
testing whether it is possible to apply the model to real
systems. To do so our spatially explicit simulation model
(SoFaDy for Soil Fauna Dynamics) was parameterized for
the species Millsonia anomala in the humid savannah of
Lamto (Côte d’Ivoire).

2. Material and methods

2.1. Model description

SoFaDy is a coupled lattice model. Space is divided in
1-m wide cells and the density of earthworms, considered
as an integer, is tracked in each square of a 50m� 50m
plot. The density of earthworms taken into account is
considered to be the density during the rainy season during
which all earthworm activities (and especially reproduc-
tion) take place and is modified at each time step, i.e. each
year. There is a priori no general rule to predict which
factors limit locally the density of earthworms. On the long
term and at a large spatial scale, earthworm populations
are obviously controlled by vegetation types and climatic
conditions (Curry, 2004). At smaller temporal and spatial
scales, earthworm densities might be regulated by soil
types, local soil conditions (humidity, texture) and the
availability of food (organic matter of suitable quality)
(Curry, 2004). Here, one source of soil heterogeneity has
been taken into account: the percentage of soil in two
size classes of aggregate: coarse (+X5mm) and fine
(5mm4+). During simulations percentages of the soil
mass in these two size classes, sp1 (fine aggregates) and sp2
(coarse aggregates, compacted soil) are tracked in each cell.
M. anomala is considered to be the only compacting factor:
it feeds on fine aggregates and produces coarse aggregates
that it cannot reingest, probably because of the morphol-
ogy of their mouth (Blanchart et al., 1997). Decompacting
factors are multiple: other species of earthworms such as
species of the Eudrilidae family, other soil macroorganisms
such as termites and roots, and finally climate (Blanchart
et al., 1997). These factors transform coarse aggregates into
fine aggregates and are independent from M. anomala

population. The following coefficients were used to compute
the percentages of the mass of soil that switch aggregate class:
compacting factors, C (% individual�1 year�1); decompact-
ing factors, D (% year�1, all parameters are described in
Table 1). D must be evaluated for average soil conditions.
Fine aggregates are not truly M. anomala resource. The
limiting factor is the organic matter contained in these
aggregates, but since M. anomala cannot access to the organic
matter contained in big aggregates, small aggregates can be
considered as a proxy for resource availability. nT being the
local number of earthworms, this leads to the following
formula for the dynamics of fine aggregates:

sp1ðtþ 1Þ ¼ sp1ðtÞ þD� CnT.
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Since sp1 and sp2 are percentages the simulation program
also include tests to maintain their values between 0 and 100
and we always have sp2 ¼ 100�sp1.

C is assumed to correspond to the optimal quantity of
soil ingested annually by a M. anomala and is therefore
used to compute environment-dependant mortality, dis-
persal, and fecundity (see below for the formula). When the
quantity of available fine aggregates is limiting (see below),
C is no longer multiplied by the local number of
earthworms to compute the quantity of fine aggregates
transformed into coarse ones: all fine aggregates are
considered to be consumed. No between years environ-
mental variation is considered so that parameters are
deemed constant.

M. anomala life-cycle is modelled using a reproduction
rate (b, number of newborn offspring produced each year
by each earthworm) and a minimum mortality rate (dmin)
corresponding to the survival rate of individuals in optimal
environmental conditions, i.e. appropriate humidity, low
percentage of compacted soil, high content of soil organic
matter. Fine aggregates are assumed to be the limiting
resource. The number of worms that can feed optimally,
i.e. without suffering extra mortality, on available fine
aggregates is calculated. When there are actually fewer
worms than this number the minimum mortality rate is
applied (dmin). Otherwise, nT being the number of worms in
the considered cell (and sp1 being the percentage of soil in
the finer aggregate class, see above), the theoretical
percentage of ‘‘starving’’ worms is calculated

nT � sp1=C

nT

and is used to calculate the environment-dependant
(rateenvt) mortality rate. Taken together we have

denvt ¼ max
nT � sp1=C

nT

� �1=ed

; dmin

" #
,

1/ed is the exponent determining how likely ‘‘starving’’
worms are to die, i.e. the sensitivity of mortality to the
percentage of fine aggregates. (i) If 1/ed ¼ 1 all ‘‘starving’’
worms die; (ii) if 1=ed41 less worms die; (iii) if 0p1=edo1
more worms die. C corresponds to the amount of fine
aggregates an earthworm must ingest for its mortality to be
minimum. Thus, if worms share the soil resource
(0oedo1), worms that ingest sub-optimal amounts of soil
tend not to die (case ii). Conversely, if some individuals
monopolize the greatest share of the resource (1oed), other
worms tend to die (case iii). When ed increases the strength
of the influence of the availability of fine aggregates on
mortality increases. Therefore, ed is hereafter referred to as
the sensitivity of mortality to the percentage of fine
aggregates (or for short to soil aggregation).

Worms can emigrate from their 1-m wide cells and their
dispersal distances along the x and y axes of the grid were
considered to follow a centered Gaussian law with variance
s2 which corresponds to the hypothesis of a random walk:
the mean dispersal distance is always 0 but the more mobile
earthworms are, the more likely they are to end up far from
their initial position after their random walk and the larger
s should be. New positions of worms were calculated
assuming that worms are located originally in the middle of
their cells. At each time step the processes described above
are applied in the following order: reproduction, mortality,
dispersion, compaction of the soil, decompaction of the
soil. In some simulations, dispersal was applied before
mortality.
In some cases, the availability of fine aggregates was also

considered to influence either dispersal or the production of
juveniles. This was implemented as for mortality, calculat-
ing environment-dependent dispersal ability (senvt) and
fecundity (benvt) as follows:

senvt ¼ s 1þ
nT � sp1=C

nT

� �es

,

and

benvt ¼ min 2b 1�
nT � sp1=C

nT

� �1=eb
 !

; b

" #
.

es and eb are, respectively, the sensitivity of mobility and
fecundity to the percentage of fine aggregates. If es40, the
mobility of earthworms increases when the number of
starving individuals increases, i.e. when environment
quality decreases. This would occur if earthworms have
evolved a strategy to avoid low-quality patches of soil.
Conversely, if eso0, the mobility of earthworms decreases
when the percentage of coarse aggregates increases, i.e.
when environmental quality decreases. This could be the
case if it is more difficult for M. anomala to move in a
compacted soil, coarse aggregates playing the role of
obstacles. When the number of ‘‘starving individuals’’
increases, above a threshold, fecundity decreases and the
higher eb is the quicker this decrease is (necessarily 0peb).
When all worms are starving fecundity is null.
SoFaDy is not truly individual-based since only the

density of worms in each cell is tracked and since all worms
are considered identical. However, the integer number of
surviving earthworms among the nT worms of a cell was
determined stochastically: for each individual a random
number is drawn between 0 and 1, and if this number is
lower than denvt, the individual dies. Similarly, the dispersal
distance of each individual was determined stochastically
according to a bivariate Gaussian law N(0, s2)(see above).
Finally, the total number of newborn earthworms in a cell
was determined multiplying nT by the fecundity of the cell,
b. Developing a truly individual-based model was not an
option due to the high number of worms to be monitored
(more than 60 000 for a mean density of 25 individualsm�2)
and the necessity to run many simulations (1020 for Fig. 2).
However, monitoring integer numbers of individuals in
each cell and conditioning their fate (survival, dispersal
distance) to probability laws is realistic and allows for
demographic stochasticity.
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Parameters were estimated, when possible, using empiri-
cal data gathered in Lamto shrub savannas. To estimate
the parameters of soil compaction/decompaction we used
Blanchart et al. (1997)’s experiment, but their results were
rescaled to fit in our 1m2-1-year time step frame work. The
compaction parameter (C) was recalculated on a basis of
one earthworm by square meter, so that this parameter was
multiplied by the density of worms during simulations to
determine the quantity of fine aggregates theoretically
ingested for no earthworm to be starving (C ¼ 0.301). It
must be kept in mind that we can only estimate an average
parameter of decompaction (D) based on average soil
conditions, and an average density of Eudrilidae (we
corrected our parameters to take into account the high
Eudrilidae densities used in Blanchart et al.’s experiment,
D ¼ 5.658).

Life cycles parameters were estimated using Lavelle’s
PhD thesis (Lavelle, 1971). Fecundity and survival
were estimated using field sampling, breeding in laboratory
and breeding in the field. An annual mortality rate
of 0.8 was found in the field and 0.2 in the laboratory.
The laboratory conditions were optimal regarding aggre-
gate availability, which is what we need, but optimal
climatic conditions were probably leading to an over-
estimation of survival. In the field, aggregate availability
was not optimal. Consequently dmin value was chosen
to be 0.6. An annual production of 2–4 newborn worms
per adult appears to be a good estimation. Lavelle
found that sexual maturity was reached roughly at the
age of 1 year which justifies the 1-year time step used in
our model, although there are yearly two periods of
reproduction.

Boundaries of the grid were wrapped-around to avoid
boundary effects, i.e. to avoid that boundary cells have less
neighboring cells than the others. For each simulation the
model was run for 100 time steps (years) starting from a
situation where the density of earthworms and the
percentage of fine aggregates are randomly chosen,
respectively, in the intervals [0, 25] and [20, 40]. Preliminary
simulations showed that after 100 time steps (1) the total
number of earthworms, over the whole simulated plot,
always reaches equilibrium or makes very small oscillations
around a plateau, (2) initial conditions have virtually no
influence on the outcome of the model as soon as initial
earthworm densities are not too low for the population not
to go extinct due to demographic stochasticity. Thus,
running all simulations for 100 years allowed comparing
simulations that stabilize after different numbers of years
(typically low values of mobility lead to longer times of
stabilization). We analyzed the effect of the two para-
meters, which were not assessed using empirical data (see
Figs. 1 and 2): the sensitivity of mortality to the percentage
of fine aggregates (ed) and mobility (s). 17� 15 combina-
tions of these two parameters (edA[0.4, 50] and sA[0.2,
3.0]) were tested for each set of simulation conditions. In
certain cases, the sensitivity of fecundity (ebA[0.4, 50]) or
mobility (esA[�3, 3]) to soil aggregation was varied instead
of the sensitivity of mortality. In all cases 5 repetitions were
achieved for each parameter combination and the means of
the studied variables over these 5 repetitions are displayed
(Figs. 1 and 2).
2.2. Comparison of model outputs to empirical data

The mean and the variance of M. anomala density have
already been assessed in Lamto shrub savannas using a
suitable data set (Lavelle, 1978): densities were assessed
along the year through an exhaustive search in many
independent 1m2 wide blocks. Due to the size of the
sampling unit the assessed densities can be directly
compared to our simulation results. The mean density
calculated monthly over 12 blocks ranged between 12 and
30 individualsm�2 (mean over 19 months 20 in-
dividualsm�2), while the standard deviation ranged be-
tween 5 and 16 individualsm�2 (mean over 19 months
8 individualsm�2).
Spatial distributions of M. anomala have been studied in

Lamto in 50� 50m plots, earthworm densities being
measured in one 0.25� 0.25m wide blocks every 5m
(Rossi, 2003). Due to this sampling and especially to the
small size of sampling units, which is likely to modify
drastically the estimations of the variance of the density
(Levin, 1992; Rossi and Nuutinen, 2004), it is difficult to
compare directly these data set to our simulation results.
Yet, the empirical data sets were analyzed using geostatis-
tics and variograms (Rossi, 2003). Spherical models were
fitted to the semivariance estimations (Goovaerts, 1997)
according to the following:

if hoa; gðhÞ ¼ C0 þ Cs
3

2

h

a
�

1

2

h

a

� �3
" #

if hXa; gðhÞ ¼ C0 þ Cs.

The model is characterized by three parameters (cf. Fig.
3C and D): C0, the nugget variance; Cs the spatial variance;
a, the range. The semivariance is assessed on all pairs of
sampled points lying within a certain distance class from
each other. The semivariance increases from C0 at the
origin (distance ¼ 0) to a plateau (the semivariance is then
C0+Cs) which is reached when distance ¼ a. For our
purpose, the range is of particular interest because it is
the distance at which the semivariance reaches its
maximum values (the sill) and remains constant. In the
case of an aggregative distribution, it is thus an indi-
cation of the scale at which autocorrelation is expressed as
shown by empirical studies for M. anomala. In the field,
patches of soil with high M. anomala densities can be as
large as 20m wide, and lead to high range values as
estimated through spherical models (Rossi, 2003). Our
simulation results where analyzed using the same method
and range values higher than 10m were considered
as a good qualitative fit between the model and empirical
data.
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Fig. 1. Basic simulation results. For each 3D graph, the x and z axes correspond, respectively, to the sensitivity of mortality (e) to the availability of fine

aggregates (sp1), and to the mobility (s). Each graph displays on the y-axis a different variable that has been calculated for the 50� 50 cells of a simulation

run: the mean and the standard deviation of M. anomala density and the percentage of fine aggregates in each 1m2 cell. b ¼ 4, dispersal is applied before

mortality, only mortality depends on soil aggregation. Its must be noted that the x-axis is no linearly graduated.
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3. Results

3.1. General behavior of the model

The mean density of earthworms increases when the
sensitivity of mortality to soil aggregation (ed) decreases
(Fig. 1A). The mean density does not depend on mobility
(s). The standard deviation of earthworm density is low
(about 5) when sensitivity of mortality to soil aggregation
is lower than 2 (Fig. 1B). The standard deviation of the
density increases non-linearly when the sensitivity of
mortality increases. Thus, the standard deviation and the
mean are negatively correlated.

Since M. anomala consumes fine aggregates, the mean
percentage of fine aggregates (sp1) increases when the
density of M. anomala decreases (Fig. 1C), i.e. for high
sensitivities of mortality to soil aggregation. The variability
in the percentage of fine aggregates (the resource) logically
also increases (Fig. 1D) when the variability in earthworm
(the consumer) density increases (Fig. 1B), i.e. again for
high sensitivities of mortality to soil aggregation. The key
point is that for high values of the sensitivity of mortality
to soil aggregation the mean and the standard deviation of
the percentage of fine aggregates increase steeply (and
much more neatly than the standard deviation of the
earthworm density) for low mobility values (so0.5). This
is the first effect of dispersion and space pointed out by our
model. As other measures of local variability (standard
deviations of the earthworm density and the percentage of
fine aggregates), the nugget and spatial variances estimated
for the variograms of earthworm distribution increase
abruptly when the sensitivity of mortality to environmental
quality is high (5oed, graphs not displayed).

3.2. Spatial distribution

The patterns described so far are common to all
simulations and do not depend on fecundity (either 2 or
4) or the order in which mortality and dispersal are applied.
They are encountered either when fecundity, mortality or
dispersal depend on soil aggregation. However, these
factors determine whether a heterogeneous spatial struc-
ture appears, with low and high earthworm density
patches. In most cases, there is no long-range spatial
structure (see Fig. 2A), i.e. the range estimated for the
variogram of the earthworm density is very low (see
Fig. 3D). In other cases the range becomes higher than
10m for some combinations of the mobility and the
sensitivity of mortality or fecundity to soil aggregation
(Fig. 2B–D). Typically this happens either for low values of
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Fig. 2. Analysis of earthworm spatial distribution. Variogram range, as defined by a spherical model, is displayed as a function of earthworm mobility and

the sensitivity of their mortality (or fecundity) to the percentage of fine aggregates (sp1). Earthworm densities were log-transformed to compute the

variogram. (A) b ¼ 2, dispersal then mortality, only mortality depends on soil aggregation; (B) b ¼ 4, dispersal then mortality, only mortality depends on

soil aggregation; (C) b ¼ 4, dispersal then mortality, mortality and dispersal depend on soil aggregation (es ¼ �2 so that mobility decreases when the

percentage of coarse aggregates increases); (D) b ¼ 4, mortality then dispersal, only fecundity depends on soil aggregation.
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mobility (so0.5) and high sensitivities to soil aggregation
(2oed or ebo0.5, see Fig. 2D), or for high sensitivities to
soil aggregation, the range increasing when mobility
increases (Fig. 2C). Both features can appear in the same
set of simulations (Fig. 2B).

Fig. 3 gives two examples of simulated spatial distribu-
tions. In the first case (panel A), an aggregative spatial
structure appears with large patches (410m in diameter)
with higher earthworms densities and large gaps with low
earthworm densities. In the second case (panel B), the
spatial variability in earthworm density is lower and the
spatial structure remains homogeneous. These differences
in structures are made clear by the variograms (Fig. 3C and
D). Variograms are flat when spatial structure is homo-
geneous and the range is then null (Fig. 3D). For non-
random spatial distributions, the semi-variance increases
with distance before reaching a plateau, which leads to
non-null range values (Fig. 3C). Generally speaking,
spatial aggregation and large range values only appear
when variability in both earthworm density and percentage
of fine aggregates is high (Fig. 1), i.e. when the sensitivity of
mortality to soil aggregation is high.

We investigated systematically the effect of fecundity
(2 or 4), the order in which mortality and dispersal
are applied, and the demographic parameters depend-
ing on soil aggregation (fecundity, mortality, or dispersal).
In Table 2 are displayed the results for which only
one parameter depends on soil aggregation. In Table 3
are displayed the results for which two parameters
depend on soil aggregation. Dependence of dispersal,
as opposed to mortality and fecundity, on soil aggrega-
tion never results, alone, in large-scale spatial structures.
Spatial aggregation tends to appear when fecundity is
high (b ¼ 4) and when dispersal occurs before mortality.
There are exceptions to this general pattern. For example,
when both dispersal and fecundity depend on soil
aggregation, aggregative spatial structure only appears
when mortality is applied before dispersal (bottom of
Table 3).

3.3. Comparison with empirical data

High sensitivities of mortality (see Fig. 1) or fecundity
to soil aggregation (graph not displayed) lead to values for
the mean and standard deviation of M. anomala density,
and for the percentage of fine aggregates, that are
compatible with empirical data. Hence, the simulated
mean and standard deviation are respectively around 20
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Fig. 3. Example of model outputs corresponding to the simulation conditions of Fig. 2B. Earthworm density maps are displayed with the corresponding

variograms for which spherical models were fitted according to a spherical model (Goovaerts, 1997). For the variograms, the logarithm of densities was

used. The spherical model is defined by three parameters: C0, the nugget variance; Cs the spatial variance; a, the range (see text for details). Maps display

the density of earthworms in each 1m2 cell. Squares are used for densities above the mean, dots for densities below the mean. The size of the symbol is

proportional to the difference to the mean. b ¼ 4, mortality then dispersal, only mortality depends on soil aggregation. Panel A, s ¼ 1.0, ed ¼ 12.5, large-

scale spatial structures; panel B, s ¼ 2.0, ed ¼ 1.0, homogeneous spatial structure.
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individuals m�2 and between 10 and 20 individuals m�2

while empirical data show that they belong respectively to
the intervals [12, 30] and [5, 16]. Percentages of fine
aggregates found with the same simulations, between 30%
and 60%, are also compatible with observed values
(Blanchart et al., 1997). Alone, dependence of dispersal
on soil aggregation does not permit the auto-regulation of
the population and leads to density values much too high
to be realistic.

It was possible to find aggregative earthworm distribu-
tions with large-size patches (long ranges as estimated
using variograms, Fig. 2). Such patterns arise when
sensitivity of mortality or fecundity to soil aggregation
is high and either when mobility is low or high. Such
patterns are compatible with those described empirically
(Rossi, 2003) as far as the spatial scale is concerned (the
range).
4. Discussion

4.1. The mechanism of spatial aggregation

The first pattern to be explained is the increase in the
variability in earthworm density for high values of the
sensitivity of mortality to soil aggregation. For low values
of this sensitivity fecundity is always large enough to make
up for mortality so that the remaining variability (constant
standard deviation around 5) must be due to demographic
stochasticity (this was checked suppressing stochasticity in
the simulation program). For large values of the sensitivity
of mortality, fecundity is no longer able to make up for
mortality in one reproductive event (1 year). Consequently
there are square meters with low earthworm densities.
These densities increase progressively during several years
and, when they exceed the optimal density (that allows all
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Table 2

Results of simulations

Dispersal/mortality ed es eb Fecundity (# new-born

year�1 adult�1)

Large-scale spatial

structure

Only mortality depends on soil aggregation

MD var — — 2 No

DM var — — 2 No

MD var — — 4 No

DM var — — 4 Yes

Only dispersal depends on soil aggregation

MD — var — 2 No

DM — var — 2 No

MD — var — 4 No

DM — var — 4 No

Only fecundity depends on soil aggregation

MD — — var 2 No

DM — — var 2 No

MD — — var 4 Yes

DM — — var 4 Yes

Simulation conditions are defined by a fecundity value and the order in which mortality and dispersal are applied (MD when mortality is applied before

dispersal, DM otherwise). For each set of simulations 15� 17 combinations of the mobility and the sensitivity of one demographic parameter to soil

aggregation were tested. This variable demographic parameter is denoted by the term ‘‘var’’, in the corresponding column (respectively, ed, es and eb for

mortality, mobility, and fecundity). The symbol ‘‘—’’ was written to indicate the parameters that were not variable for a given set of simulations. The last

column of the table indicates whether some of these simulations lead to aggregated spatial patterns as defined by range values higher than 10m (cf. Fig. 3C).

Table 3

Results of simulations

Dispersal/mortality ed es eb Fecundity (# new-born

year�1 adult�1)

Large-scale spatial

structure

Both mortality and dispersal depend on soil aggregation

DM var 2 — 2 No

DM var 2 — 2 No

MD var 2 — 4 No

DM var 2 — 4 Yes

MD var �2 — 2 No

DM var �2 — 2 No

MD var �2 — 4 No

DM var �2 — 4 Yes

Both mortality and fecundity depend on soil aggregation

MD var — 10 2 No

DM var — 10 2 No

MD var — 10 4 No

DM var — 10 4 Yes

MD var — 0.5 2 No

DM var — 0.5 2 No

MD var — 0.5 4 No

DM var — 0.5 4 Yes

Both dispersal and fecundity depend on soil aggregation

DM — 2 var 2 No

DM — 2 var 2 No

MD — 2 var 4 Yes

DM — 2 var 4 No

MD — �2 var 2 Yes

DM — �2 var 2 No

MD — �2 var 4 Yes

DM — �2 var 4 No

Same caption as for Table 2. Here two demographic parameters depend on soil aggregation for each set of simulations. These parameters (respectively, ed,
es and eb for the sensitivity of mortality, mobility and fecundity to soil aggregation) are marked either by the term ‘‘var’’ when 17 values of this parameter

were tested or by the fixed value used for this parameter. For each set of simulations (each line of the table) 15 values of mobility were tested in

combination with the 17 values of sensitivity. The last column of the table indicates whether some of these simulations lead to aggregated spatial patterns

as defined by range values higher than 10m.
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earthworms to access to fine aggregates), mortality
becomes very high due to the high sensitivity of mortality
to aggregation. This automatically increases the variabi-
lity (in space and time) in earthworm density.

The second pattern to be explained is the apparition of
aggregative spatial distributions when the sensitivity of
mortality to soil aggregation is high and when mobility is
low. A necessary condition to get an aggregative spatial
pattern is to have an important variability in earthworm
density which requires large values for the sensitivity of
mortality to soil aggregation (as explained above). To get
an aggregative spatial structure, spatial auto-correlation is
also required and depends on mobility. Dispersal must be
efficient enough to synchronize neighboring cells, i.e. to
allow neighboring cells to host similar earthworm densities
during several years, but when dispersal becomes too
efficient earthworm density tends to be homogeneous. This
analysis is supported by models published on spatial
predator–prey systems (de Roos et al., 1998; Hosseini,
2003). Here, fecundity, the order in which the simulation
program applies reproduction and mortality, and depen-
dence of mobility on soil aggregation influence in a non
intuitive way the level of mobility necessary to get
aggregative distributions for earthworms (see Fig. 2).

4.2. Earthworm spatial distribution

Our model has a theoretical value on its own right, as an
original type of consumer–resource model. Before dealing
with this point, we discuss our results in the context of
earthworm dynamics. We have shown using a simple
model that local interactions and self-organization are
good candidates to explain, at least partially, earthworm
patchy distributions and the weak correlations between
earthworm distribution and pre-existing soil heterogeneity
(Phillipson et al., 1976; Poier and Richter, 1992; Rossi
et al., 1997). Although two critical parameters of the model
have not been assessed and have probably never been
assessed for any earthworm, three elements support this
conclusion: (1) Patchy distributions, with large patches
comparable to the ones observed in the savannah (large
ranges as estimated using variograms), appear with
parameter values (fecundity, minimum mortality, compac-
tion and decompaction) assessed using field data. (2) This
occurs when the mobility of earthworms is low and when
the sensitivity of earthworm demographic parameters to
soil aggregation is high, which is compatible with what is
know about their biology (see below). (3) In these cases the
simulated means and standard deviations of earthworm
density and percentages of fine aggregates in the soil are
compatible with empirical observations.

Preliminary simulations showed that initial spatial
distributions of earthworms and percentages of fine
aggregates have virtually no influence on spatial distribu-
tion of earthworms at equilibrium and on the location of
high and low earthworm density patches. Yet, in Lamto
savannahs as well as in other ecosystems (Phillipson et al.,
1976; Poier and Richter, 1992; Rossi et al., 1997), pre-
existing sources of spatial heterogeneity are likely to
influence the earthworm aggregative distribution indepen-
dently of self-organization processes. First, other resources
such as soil organic matter could influence earthworm
distribution, especially because plant distribution is likely
to cause a permanent heterogeneous distribution of soil
organic matter. For example, in Lamto, as in most
savannahs, trees grouped in clumps are likely to supply
earthworms with organic matter of better quality than
grasses. Second, soil texture, which is not homogeneous,
can hardly be modified by earthworms (unless they mix
different soil layers having different textures) and probably
causes spatial variations in the stability of coarse aggre-
gates (clay being a stabilizing factor). Clay also leads to a
better storage of soil organic matter, the endogeic earth-
worm food resource. These factors could be incorporated
in the model, which will allow analyzing how self-
organization factors and external constraint interplay to
determine spatial distributions of earthworm populations.

4.3. Limitations of the model

The main simplifying assumption of SoFaDy is that
demographic parameters are constant in time while it is
well known that earthworms are sensitive to climatic
variability (Lavelle and Spain, 2001). In the tropics
earthworms are particularly sensitive to variations in the
length and intensity of the dry season during which
mortality is often high in spite of migration to deeper soil
layers and quiescence. In climatically unfavorable years
density-independent mortality increases, densities decrease,
and local self-regulation processes, i.e. increase in mortality
due to the shortage of a resource, are likely to be less
efficient. The reverse happens in climatically favorable
years. Density-dependence being due to the availability of
fine aggregates, a drastic decrease in the mean earthworm
density during 1 year is not likely to suppress all spatial
variations in survival because several years with low
earthworm densities are necessary to regenerate the
fine aggregates. For these reasons temporal variations
in demographic parameters are not likely to impede
heterogeneous spatial structures to appear through self-
organization.
Density-dependence in earthworms has already been

documented in some earthworm species, but underlying
mechanisms are often unknown (Butt et al., 1994;
Kammenga et al., 2003). A key assumption of the model
is that density-dependence in M. anomala is due to a main
limiting resource, i.e. soil fine aggregates. It is indeed
known that the availability of food, i.e. soil organic matter,
is often limiting (Lavelle and Spain, 2001) and that the
quality of soil organic matter is also influential, especially
for M. anomala (Lavelle et al., 1989). Besides, predator
could locally reduce earthworm density, probably more in
the case of anecic species than for endogeic species such as
M. Anomala (Judas, 1989; Klok et al., 1997). This could in
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turn participate in creating a patchy distribution in
earthworms. Taking into account such factors would
benefit the model.

Spatial structures with large patches arise in two cases:
for very low values of mobility and for much higher
ones (Fig. 2) that seem less realistic. Endogeic earthworm
horizontal mobility has been assessed very rarely
(Marinissen and van den Bosch, 1992) but their mobility
is likely to be low. Although they move quasi constantly to
feed it seems realistic that they move horizontally in
random directions and that there straight dispersal distance
in 1 year is at most 1 or 2m. Such a low mobility leads to
heterogeneous spatial structures in earthworm density but
experiments are needed to assess precisely earthworm
mobility, one difficulty being that a marking technique
has first to be developed. It could be argued that
earthworms move randomly only when soil properties are
homogeneous and favorable. As soon as soil is hetero-
geneous, evolution should favour strategies that enable
earthworms to move along gradients in soil properties, and
thus to chose their habitats. Indeed, our simulations show
that such strategies influence earthworm distribution and
may be involved in self-organization, but empirical results
pointing at such strategies are very scarce (Mather and
Christensen, 1992). More generally, although our model is
based on several PhD theses which have resulted in the
publication of about twenty empirically based papers on
M. anomala, our modelling efforts should foster new field
and experimental studies to assess the mobility of earth-
worms and the sensitivity of their life-history parameters to
soil quality.

4.4. Self-organisation in simple consumer–resource systems

Our model is conceptually very simple and general. It
describes the demography of a population regulated by
density-dependent processes mediated by the local deple-
tion in a resource as other spatial model of host–parasitoid
(Hassel and Comins, 1991) or predator–prey system (de
Roos et al., 1991). As in classical spatial resource–consu-
mer models (de Roos et al., 1991; Hassel and Comins,
1991) spatial organization results from local resource
depletion. Together with limited dispersal this decreases
the mean consumption rate but increases the variability of
this consumption rate (Hosseini, 2003) which increases
spatial and temporal variations in the consumer demo-
graphic parameters and density. Limited dispersal ability
avoids a constant homogenization of the consumer density
but allows for a certain level of synchronization between
neighboring sites which leads to large patches with higher
consumer densities.

As hypothesized, self-organization arises in our model
although resource renewal is passive and does not depend
on the local availability of the resource, as it is the case with
preys and hosts. This is an important result that could be
applied to a wide range of ecological systems. (A) We can
think about all soil organisms which, as earthworms, feed
on a certain type of litter or a certain fraction of soil
organic matter (Lavelle and Spain, 2001). Such a resource
is likely to be renewed at a fixed rate depending on primary
production and plant biomass turnover. On the long term
the action of these organisms could interact with primary
production since they are involved in nutrient cycling.
However, on shorter time scales the resource dynamics is
unlikely to depend on these organisms. In the same vein,
(B) predators or (C) herbivores with low mobility could
locally exhaust their resource that could be renewed
integrally independently of the level of exhaustion. This
should arise if the prey (the plant) has a very high dispersal
ability leading to global dispersal or if the prey population
has a very high growth rate and can quickly recover from a
few individuals (or a low biomass) because it is locally only
limited by predation (herbivory) and not by any limiting
resource. Finally, our model is related to spatially explicit
models of plants taking explicitly into account plant effect
on local nutrient availability (D) through nutrient absorp-
tion, local recycling of organic matter (Colasanti and
Grime, 1993) and nitrogen fixation (Jenerette and Wu,
2004). In this type of model, as in ours, resource (mineral
nutrients) renewal/depletion only depends on the consumer
density and not on the availability of the resource. Such
models usually also result in self-organization (Rietkerk
et al., 2004).
Our model leads to the same properties of the consumer

population as models involving more complex resource
dynamics (de Roos et al., 1991; Durrett and Levin, 2000).
At a large scale, consumer (i.e. earthworm) density always
reaches an equilibrium value hiding temporal and spatial
variations in local densities. Asynchronic variations in the
local densities of consumer would lead to a stabilization of
the whole population density (de Roos et al., 1991) (but see
Hosseini (2003)). Spatial patterns are not fixed in time in
the sense that local neighboring patches (cells of our lattice
model) are synchronized for a certain period and then get
asynchronised. In other words, the shape of high and low
density areas changes continuously leading to a ‘spatial
chaos’ as in some host–parasitoid systems (Hassel and
Comins, 1991; Comins et al., 1992).

5. Conclusion

Finally, why should we go on bothering with earthworm
spatial patterns? First, models attempting to parameterize
a spatial resource–consumer model for an animal popula-
tion and to compare the model outputs with empirical
patterns are relatively scarce (Wilson et al., 1999). Second,
earthworms are ecosystem engineers (Jones et al., 1997)
and very few models have been published on the dynamics
of an ecosystem engineer and the way it modifies
ecosystems (Cuddington and Hastings, 2004; Wright
et al., 2004). Finally, earthworms influence plant growth
in different ways (Scheu, 2003; Brown et al., 2004; Blouin
et al., 2006): through their ecosystem engineering activities
that have rarely been modelled and through their effect on
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organic matter mineralization. Taking soil organic matter
content and mineralization into account would thus be an
important development of SoFaDy to predict the effect of
earthworms on plant dynamics.
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