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A B S T R A C T

Trypanosomes are protozoan parasites found worldwide, infecting humans and animals. In the past decade, the
number of reports on atypical human cases due to Trypanosoma lewisi or T. lewisi-like has increased urging to
investigate the multiple factors driving the disease dynamics, particularly in cities where rodents and humans co-
exist at high densities. In the present survey, we used a species distribution model, Maxent, to assess the spatial
pattern of Trypanosoma-positive rodents in the city of Niamey. The explanatory variables were landscape metrics
describing urban landscape composition and physiognomy computed from 8 land-cover classes. We computed
the metrics around each data location using a set of circular buffers of increasing radii (20 m, 40 m, 60 m, 80 m
and 100 m). For each spatial resolution, we determined the optimal combination of feature class and regular-
ization multipliers by fitting Maxent with the full dataset. Since our dataset was small (114 occurrences) we
expected an important uncertainty associated to data partitioning into calibration and evaluation datasets. We
thus performed 350 independent model runs with a training dataset representing a random subset of 80% of the
occurrences and the optimal Maxent parameters. Each model yielded a map of habitat suitability over Niamey,
which was transformed into a binary map implementing a threshold maximizing the sensitivity and the speci-
ficity. The resulting binary maps were combined to display the proportion of models that indicated a good
environmental suitability for Trypanosoma-positive rodents. Maxent performed better with landscape metrics
derived from buffers of 80 m. Habitat suitability for Trypanosoma-positive rodents exhibited large patches linked
to urban features such as patch richness and the proportion of landscape covered by concrete or tarred areas.
Such inferences could be helpful in assessing areas at risk, setting of monitoring programs, public and medical
staff awareness or even vaccination campaigns.

1. Introduction

In 2014, 54% of the world's population was urban, a proportion that
is expected to reach 66% by 2050 (United Nations, 2014) making urban
areas management one of the most important challenges of the 21st
century. In Africa, cities represent ca. 40% of the population and still
grow fast, currently showing a rate of nearly 3.4% per year, the highest
in the World (Anderson et al., 2013). Many of these fast-growing cities
involve unplanned areas of dense and impoverished slums with in-
adequate infrastructures, basic services, medical facilities or public
amenities (Simon et al., 2006), often resulting in a marked spatial
heterogeneity in terms of population health (Pacione, 2009). As such,
they correspond to an intermediate situation between western cities in
which the main sources of morbidity and mortality arise from chronic
degenerative conditions linked to older adulthood, and underdeveloped

rural areas where pandemics of infections and parasitic and dietary
diseases are the chief causes of death (see the epidemiological transition
concept Omran, 1971). Although health resources are usually con-
centrated in cities and scarce in rural areas, they often do not bene-
ficiate to the inhabitants living in slums and shantytowns (Brockerhoff
and Brennan, 1998), leading to the notion of “urban penalty” (Pacione,
2009) and “urban double burden” (Agyei-Mensah and de-Graft Aikins,
2010). From another perspective, the intra-urban contrasts in health led
to the development of the inverse care law which stipulates that the
availability of good medical care is inversely proportional to the need
for it (Hart, 1971). This phenomenon is well documented (Oni et al.,
2016; Timæus and Lush, 1995) and might be further amplified by cli-
mate change (Sverdlik, 2011). This puts emphasis on the urgent need of
developing accurate tools to better understand and anticipate health
hazards in spatially explicit urban frameworks.
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Spatial epidemiology is the study of spatial variation in disease risk
or incidence and the ecological and/or socio-economic factors that
shape it (Brooker, 2007; Ostfeld et al., 2005). The presence of human
infectious diseases, particularly of host- and/or vector-borne ones, de-
pends on multiple factors, a critical one being the existence of suitable
conditions for the maintain of host and vector species of epidemiolo-
gical significance (Hartemink et al., 2015). Species distribution models
(SDM) are widely used in ecology and conservation biology to depict
species geographical distributions in relation to environmental data
(Franklin, 2009; Peterson, 2011). These tools are also increasingly
being used to predict the potential distribution of large-scale disease
and/or associated hosts/vectors spatial patterns, both at present or
under various climate change scenarios. They have proved very useful
in veterinary epidemiology (Alkhamis and VanderWaal, 2016; Escobar
et al., 2014; Escobar et al., 2015) and medicine (Ben-Ari et al., 2012;
Colacicco-Mayhugh et al., 2010; Costa et al., 2014; Kulkarni et al.,
2010; Otranto et al., 2006). Species distribution models are often based
on climatic descriptors that do not vary much at the scale of a city the
size of Niamey (several km). As a consequence, they offer limited ex-
planatory power in the context of more focused studies, such as city-
centered surveys, since urban environments are, by essence, strongly
human- and physically-modified environments. In the case of cities,
landscape composition and physiognomy appear pertinent factors as
they directly reflect habitat availability for reservoirs and hosts hence
pathogens, as well as the probability of contact between them
(Hartemink et al., 2015; Lambin et al., 2010). Landscape ecologists
have developed numerous mathematical indices (i.e. the landscape
metrics) that capture spatial attributes such as composition or phy-
siognomy of natural landscapes or agro-ecosystems (Romme, 1982;
Turner et al., 2001) and urbanized areas (Clifton et al., 2008; Luck and
Wu, 2002). Fitting SDM with landscape metrics is therefore a possible
way to account for landscape features in modeling species distribution.
Importantly, a critical issue of landscape description is scale de-
pendency (Wu, 2004). Indeed, landscape metrics may strongly vary
according to the size of the buffer zone surrounding the focus point used
in the computations. For that particular reason, it has been emphasized
that using a set of different buffer size appears to be a reasonable
strategy (Barve et al., 2011).

We here present a survey that focuses on the spatial epidemiology of
rodent-borne Trypanosoma, especially T. lewisi in the city of Niamey,
Niger. Trypanosoma lewisi is a worldwide distributed kinetoplastid
protozoa that essentially parasites rodents, especially Rattini species
(i.e. Rattus and allies Tatard et al., 2017), and that is transmitted by
fleas through their excreta. Although it is usually considered as non-
pathogenic for humans, transient and lethal infections have been
documented in humans from Asia and Africa (Howie et al., 2006; Kaur
et al., 2007; Sarataphan et al., 2007; Truc et al., 2013; Verma et al.,
2011). Furthermore, T. lewisi is now considered as potential infective in
humans since this parasite was found to be resistant to normal human
serum, like the congeneric species T. brucei and T. cruzi responsible for
sleeping sickness and Chagas disease, respectively (Lun et al., 2015).
Although the risk of emergence remains to be demonstrated (Brun,
2005), T. lewisi receives more and more attention as a new potential
threat for human health (Lun et al., 2015; Maia da Silva et al., 2010;
Truc et al., 2013). This has urged to investigate the multiple factors
driving the disease dynamics, particularly in cities where rodents and
humans co-exist at high densities (Pumhom et al., 2015).

Created ex nihilo at the very end of the nineteenth century by French
colonizers (Motcho, 2010; Salifou, 2010; Sidikou, 2011) Niamey is an
illustrative example of the rapid urban population growth typical of
colonial African cities with a population increasing from> 30,000 in
the late 1950s, to> 1,200,000 inhabitants today (Adamou, 2012;
Institut National de la statistique, 2012; Motcho, 2010; Sidikou, 2011).
Population expansion at low density has led to urban sprawl and de-
velopment of informal settlements with weak governance structure,
high levels of poverty and limited infrastructure and service deliveries

(Diop, 2008; Olvera et al., 2002). The purpose of our study is to address
the relationships between the spatial distribution of rodent-borne Try-
panosoma and both the composition and the physiognomy of the urban
landscape across the city of Niamey using SDM. To achieve this, we
have characterized urban landscape using the metrics developed in
landscape ecology and explored their relationships with the occur-
rences of trypanosomes using the maximum entropy method (Maxent)
(Elith et al., 2011; Phillips et al., 2006). In addition, we provide maps of
landscape suitability depicting the citywide risk of being exposed to the
pathogen. The identification of such areas is an important prerequisite
achievement for the set up of new researches and sampling campaigns,
for public awareness as well as public health management purposes.

2. Materials and methods

2.1. Study site: the city of Niamey

Niamey is the capital city of Niger and lies on the Niger River in a
typical semi-arid Sahelian region. The climate is characterized by high
temperatures (monthly average temperatures range between 22 and
36 °C) and low rainfalls (ca. 540 mm per year) with a single rainy
season usually occurring between May and September (Adamou, 2012).
Since its creation ca. 120 years ago, the city has experienced a con-
tinuous though recently accelerated demographic growth associated
with a spectacular spatial expansion. As commonly observed in the
developing countries, the rapid urbanization of Niamey is accompanied
by the appearance of numerous informal settlements, thus leading to a
marked socio-economical variability across the city (Diop, 2008; Olvera
et al., 2002). The present survey relies on a Geographic Information
System (GIS) of Niamey implemented from a SPOT satellite image
(scene reference number 506 132 308 121 010 151 32 T; CNES 2008,
resolution of 2 m) using 8 land-cover categories: Niger river, ponds,
bare soils, tarred areas, concrete areas, trees, other greenings and sheet
steel-made roofs (Fig. 1). The satellite image was converted into a raster
map of 2 m by 2 m resolution for landscape analyses (see below). The
EPSG projection is 32631 - WGS 84/UTM zone 31N (http://
spatialreference.org).

We encountered a peculiar problem due to the traditional use of
unfired ground as a building material (referred to as “banco”) in
Niamey. When used to construct the roof, this indigenous building
material led to a spectral signature nearly identical to that of bare soil
leading to a sole land-cover class and, as a consequence, some settle-
ments were mistaken for bare soil. Fortunately, these “banco”-made
roofs are more and more often replaced by sheet steels and nowadays
mostly occur in two underprivileged and old districts named Gamkaleye
and Karadjé (Fig. S1, Supplementary material).

2.2. Pathogens and hosts: sampling and identification

Rodent assemblages in Niamey have been described previously
(Garba et al., 2014) on the basis of molecular and chromosomal data,
thus allowing us to unambiguously identify each specimen at the spe-
cies level. In total, > 14,000 night-traps were placed in 52 localities of
Niamey, allowing us to capture 987 rodents (see Fig. 2 in Tatard et al.,
2017). Two groups of species were collected: one rural-like group (i.e.
Arvicanthis niloticus, Cricetomys gambianus, Mus nannomys hausa and
Taterillus gracilis) that inhabits rice fields and market-gardens occurring
within the city, and a group of strictly commensal species (i.e.Mastomys
natalensis and the invasive Mus musculus and Rattus rattus) associated
with the human infrastructures of the core city. Furthermore, within the
commensal species, the native M. natalensis almost strictly segregated
spatially from the two invasive species, namely Mus musculus (house
mouse) and Rattus rattus (black rat) (Garba et al., 2014).

Among the 987 rodents trapped, 896 individuals originating from
184 georeferenced sites were captured alive and could thus be mon-
itored for the presence of Trypanosoma as described in details elsewhere
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(Dobigny et al., 2011; Tatard et al., 2017) and used for the present
study. They belonged to Cricetomys gambianus (n = 12), Taterillus gra-
cilis (n = 2), Mus N. hausa (n = 1), Arvicanthis niloticus (n = 65),
Mastomys natalensis (n = 599), M. musculus (n = 64) and R. rattus
(n = 153). Trypanosoma-carrying rodents were searched using a qPCR
approach that targets a 131 bp long fragment of the 18S rDNA gene
(Dobigny et al., 2011; Tatard et al., 2017). Trypanosoma species hosted
by qPCR-positive rodents were then investigated using PCR and se-
quencing of a 400 bp long fragment of the kinetoplastid SSU rDNA gene
(Dobigny et al., 2011; Tatard et al., 2017). Rodents were sampled in
2009 and 2010. For some sampling locations, the pathogen was sear-
ched but was not found. We did not interpret these negative results as
true absences since they may be explained by different factors other
than habitat unsuitability sensu stricto (e.g., host that has not been in
contact with the pathogen yet; infection under detection threshold)
(Peterson, 2011).

2.3. Landscape analysis

The urban landscape of Niamey was characterized by means of class
and landscape level metrics calculated using the software FRAGSTATS

(McGarigal et al., 2012). The term ‘landscape metrics’ refers to indices
developed for categorical maps describing landscapes. They are used
with the aim to capture some of the synoptic features of landscapes such
as composition and physiognomy. Class metrics focus on one land-cover
class (e.g. bare soil, trees…) while landscape metrics consider all classes
simultaneously (Turner et al., 2001). We used one class metrics re-
flecting landscape composition (PLAND) and 4 landscape metrics listed
in Table 1 (see details in Turner et al., 2001). It must be noted that class
and landscape metrics are derived from the same categorical map
which implies that many metrics are correlated or collinear and provide
partially redundant information (McGarigal et al., 2012). For that
reason we have limited the number of metrics used in the models and
focused on landscape composition (PLAND), richness and diversity
measures (PRD, SIEI) as well as contagion and edge density estimations
(CONTAG, ED). The metrics were computed for circular buffers of in-
creasing radii (20 m, 40 m, 60 m, 80 m and 100 m) so as to capture
landscape features at different spatial scales (i.e. for different resolu-
tions). We positioned buffers on each pixel of the raster map displayed
in Fig. 1 and computed the metrics on the local landscapes thus de-
limited. Such method is referred to as moving window strategy in
landscape analysis (McGarigal et al., 2012). The resulting values were

Fig. 1. Map of the city of Niamey (Niger). Eight land-cover classes are represented (see text for details).

J.-P. Rossi et al. Infection, Genetics and Evolution 63 (2018) 307–315

309



returned to the centre cell thus yielding a raster maps for each metric
(examples are given in Fig. S2). Points where Trypanosoma was re-
corded were associated to the descriptors of the cell they fall in. These
raster maps also provided background data for model calibration and
citywide prediction (see below).

2.4. Modeling framework

We modeled the distribution of Trypanosoma-positive rodents by
means of Maxent, one of the most commonly used presence-only
methods (Elith et al., 2006; Phillips et al., 2006). Maxent uses occur-
rence and background data in conjunction with environmental de-
scriptors (here landscape metrics) to make a correlative model of the
environmental conditions that best reflect the species' ecological re-
quirements. In our case, the number of occurrences was small (114) and
the outputs of the model were expected to be affected by the random
partitioning of the data used in the fitting and evaluation. We therefore
considered a batch of 350 models for each buffer size and summarized
the outputs by a map depicting the frequency of models predicting the
presence of Trypanosoma-positive rodents (see details below and in Fig.
S3). We adopted a two steps strategy to build the model corresponding
to each of the 5 spatial resolutions explored. First we assessed the op-
timal parameters for the Maxent model using the full dataset and

second, we used these parameters to fit and evaluate Maxent models
using random partitioning of the dataset.

Because species' responses to environmental constraints are often
complex, it is usually useful to fit nonlinear functions (Elith et al., 2006)
and for that reason the parametrization of Maxent involves choosing
which kinds of transformations (referred to as feature classes or FCs) of
original environmental descriptors are to be used (i.e. linear, quadratic,
product, hinge and threshold: Phillips and Dudik, 2008). The para-
metrization of Maxent also involves a regularization multiplier (RM)
introduced to reduce overfitting (Merow et al., 2013). There is a
growing body of evidences showing that the default settings of Maxent
may not be optimal in all situations and might lead to poorly per-
forming models in some cases (Radosavljevic et al., 2014;
Shcheglovitova and Anderson, 2013). It is therefore advised to search
for the best parameters given the dataset at hand (Radosavljevic et al.,
2014). We built models with RM values ranging from 0.5 to 4 with
increments of 0.5 and 6 FC combinations (L, LQ, H, LQH, LQHP, LQHPT
with L = linear, Q = quadratic, H = hinge, P = product and
T = threshold) using the R package ENMeval (Muscarella et al., 2014).
This led to 48 different models. For each spatial resolution, these
models were fitted using all the occurrence points and 10,000 back-
ground points. The optimal settings corresponded to the models giving
the minimum AICc values (see Muscarella et al., 2014, for details). We

Fig. 2. Average permutation importance of the landscape descriptors
involved in the Maxent models (n = 350) for buffers of 80 m radius
over 350 runs. Error bars indicate the quantiles for p = 0.025 and
p = 0.975. PLAND: Percentage of landscape, CONTAG: Contagion
index, ED: Edge density, PRD: Patch richness density, SIEI: Simpson's
evenness index. See Table 1 for metric definition.

Table 1
Metrics used to describe the urban landscape in the city of Niamey (adapted from McGarigal et al., 2012). Level indicates if the metrics are computed for land-cover classes or for
landscape as a whole.

Acronym Name Level Description Unit

PLAND Percentage of landscape Class PLAND is a measure of landscape composition: how much of the landscape is comprised of a particular
land-cover

Percent

CONTAG Contagion index Landscape CONTAG measures the overall clumpiness on categorical map. Percent
ED Edge density Landscape Edge density (ED) quantifies the edge length in a per unit area basis. Meters per hectare
PRD Patch richness density Landscape PRD measures richness as the number of different land-covers in a landscape in a per area basis. Number per 100 ha
SIEI Simpson's evenness index Landscape SIEI expresses the evenness component of diversity by controlling for the contribution of richness to the

diversity index
None
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evaluated the performance of the AICc-selected models using the AUC
metric (Fielding and Bell, 1997) and the Boyce index (Hirzel et al.,
2006). The Boyce index is a reliable presence-only evaluation measure
that varies between −1 and +1. Positive values indicate a model
which predictions are consistent with the distribution of the presences
in the evaluation dataset. The Boyce index was calculated using the R
package ecospat (Broennimann et al., 2016).

Having assessed the best FC and RM values for each resolution (i.e.
buffer size) we run 350 independent models using the R package dismo
(Hijmans et al., 2016). In each case, the Maxent model was set up using
the optimal RM and FC values, a training dataset constituted by a
random subset of 80% of the occurrences and 10,000 background
points. Each model was used to predict the landscape suitability across
the city of Niamey using the logistic output of MaxEnt (Phillips and
Dudik, 2008). Suitability values were transformed into presence/ab-
sence binary maps by applying the threshold at which the sum of the
sensitivity (true positive rate) and specificity (true negative rate) was
the highest (Liu et al., 2005). The 350 resulting binary maps were
summarized by computing, for each pixel, the proportion of models
predicting the presence of rodent-borne Trypanosoma (details are given
in Fig. S3). For each model, the permutation importance of the en-
vironmental descriptors was assessed by randomly permuting (jack-
knife) the predictors' values between presence and background points
and examining the change in the AUC (Phillips, 2017).

3. Results

3.1. Rodent sampling and prevalence of rodent-borne Trypanosoma

Although this is not within the scope of the present paper, our re-
sults of molecular screening of rodent-borne Trypanosoma in Niamey
are briefly recalled below (for details, see Tatard et al., 2017). In total,
qPCR allowed us to identify 114 (12.6%) Trypanosoma-positive rodents,
with the highest prevalence observed in C. gambianus (6 positive in-
dividuals out of 12; 50%) and R. rattus (45/153; 29.4%), followed byM.
musculus (6/64; 9.3%), M. natalensis (52/599; 8.7%) and A. niloticus (5/
63; 7.9%), while no positive were found in the very poorly sampled T.
gracilis (N = 2) and M. n. hausa (N = 1). Trypanosoma sequences could
be retrieved only from 33 Trypanosoma-positive animals: 31 sequences
(all obtained from R. rattus) corresponded to T. lewisi or T. lewisi-like,
while 2 sequences (both from C. gambianus) were similar to T. microti.
Although this may cast some doubt on the species-specific identification
of Trypanosoma parasiting some of the rodents in Niamey, it is highly
probable that most of them belong to T. lewisi or T. lewisi-like (Tatard
et al., 2017). However, for the purpose of the present paper, we chose to
remain stringent, and to consider rodent-borne Trypanosoma spatial
distribution as a whole.

3.2. Maxent parametrization

The regularization multiplier and the feature class of the models
selected with AICc are given in Table 2. The values of the AUC ranged
from 0.70 for a resolution of 20 m to 0.79 for a resolution of 80 m. The
Boyce index was positive and ranged between 0.82 and 0.90. Both
metrics indicated that model fitted to the landscape data measured with
buffers of 80 m performed better (larger AUC and larger Boyce index).
The 350 independent models fitted using the latter FC and RM values
yielded AUC values ranging from 0.55 to 0.85 indicating a high
variability in model performances. Again, the resolution of 80 m led to
the best performing models.

3.3. Importance of the environmental descriptors

The Fig. 2 shows the average permutation importance of each
landscape metric over the 350 models for the resolution of 80 m and the
corresponding quantiles for p = 0.025 and p = 0.975. The patch

richness density was the most important variable although its permu-
tation importance varied markedly from one run to another as indicated
by its statistical envelope. Various composition metrics also contributed
to a lesser extent to the model. They reflected the proportion of land-
scape covered by tarred areas and concrete as well as the Niger river
(see also the maps of these metrics in Fig. S2, Supplementary material).

3.4. Models prediction

An example of the prediction (logistic output of Maxent) yielded for
one of the 350 models fitted for buffers of 80 m can be seen in Fig. S4
(Supplementary material). Habitat suitability changed across the city
and reached very high values in some localized hotspots. When con-
verted into binary values using the threshold at which the sum of the
sensitivity and specificity is maximum, those hot spots were easily
identifiable (Fig. S4). Pixels considered as suitable for rodent-borne
Trypanosoma formed more or less coalescent small to large patches.
Aggregating the logistic outputs of the 350 models run for 80 m radius
buffers yielded the maps displayed in Fig. 3: it shows the areas (in red)
where a large proportion of models predict suitable environmental
conditions for the pathogen. Applying the arbitrary frequency level of
95% led to the map displayed at the bottom of Fig. 3 where pixels in red
are predicted as suitable for Trypanosoma-positive rodents in at least
95% of the model runs. We obtained a similar map for the resolution of
40 m and 60 m while buffers of 20 and 100 m led to more homogeneous
map (Fig. S5, Supplementary material). The frequency threshold of 95%
used in Fig. 3 was changed to yield maps for the values of 50%, 75%
and 90% (Fig. S6, Supplementary material). Such maps reflect different
perceptions of the risk associated to Trypanosoma-positive rodents.

4. Discussion

4.1. Mapping areas at risk in the city of Niamey

Risk maps associated to new potential zoonotic threat for human
health are appealing because they provide a direct view of areas where
efforts (e.g. host or vector monitoring and control, public awareness,
environmental management actions, medical diagnostic and care) could
be put in priority. As such, they constitute a major tool of health geo-
graphy (Peterson, 2008). For instance, SDM predictions were recently
implemented to map H7N9 risk in China (Xu et al., 2016). In the same
manner, the modeling of the past, current and future distributions of
Aedes albopictus (vector for dengue, chikungunya, zika, etc.) in Southern
France has shown that the mosquito progression was faster and faster
every year, but also that long-distance dispersals were poorly successful
(Roche et al., 2015), thus suggesting that population control should

Table 2
Optimal feature classes and regularization parameters and two evaluation metrics for
Maxent models linking urban landscape features computed for 5 different spatial re-
solutions to the occurrences of Trypanosoma-positive rodents in the city of Niamey
(Niger). L = linear, Q = quadratic, H = hinge and P = product. In a first step, the
Maxent models were fitted with the full dataset to determine the optimal feature class and
regularization multiplier (one model per spatial resolution). The AUC (full dataset) and
the Boyce index were computed for these models. The optimal RM and FC values were
then used to fit 350 independent models with a training dataset constituted by a random
subset of 80% of the occurrences and 10,000 background points. The right-column gives
the range of the AUC values for these models.

Resolution Feature
classes
(FC)

Regularization
multiplier (RM)

AUC
(Full
dataset)

Boyce
index

AUC (range)

20 m LQHP 3.5 0.70 0.85 0.55–0.77
40 m LQHP 3.5 0.75 0.82 0.60–0.82
60 m LQHP 3.5 0.76 0.90 0.43–0.78
80 m LQH 3.5 0.79 0.94 0.63–0.85
100 m L 3 0.75 0.92 0.59–0.81
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Fig. 3. Risk maps for the presence of
Trypanosoma-positive rodents in the city of
Niamey (Niger). Top: map of the frequency of
models considering a given pixel as suitable
for the Trypanosoma-positive rodents. Bottom:
map showing the pixels considered as suitable
in at least 95% of the Maxent models. The
analysis is based on local landscapes corre-
sponding to circular buffers of 80 m radius.
Open circles indicate sampling locations where
Trypanosoma-positive rodents were recorded.
(For interpretation of the references to color in
this figure, the reader is referred to the web
version of this article.)
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essentially be performed around the invasion front. Such models and
risk maps are also precious to design long-term surveys and identify
ecological and possibly socioeconomic factors that drive host and
parasite spatio-temporal dynamics in urban settings. Changing the
threshold frequency as we did in Fig. S6 (Supplementary material) adds
certain flexibility in the interpretation of the results by allowing local
authorities to decide what level of risk they are prepared to take.

The maps produced in the present survey revealed that areas at risk
for rodent-borne trypanosomes are scattered across most of Niamey but
with higher intensity along the Niger River course (Fig. 3). The spatial
distribution of pixels predicted as suitable for Trypanosoma-positive
rodents are not distributed as a few large patches but rather as many
more or less coalescent small aggregates which density decreases with
the distance from the Niger River. There is no obvious link with land-
covers such as urban greenings or irrigated gardens that were shown to
play an important role in maintenance and circulation of rodent-borne
Toxoplasma gondii (Mercier et al., 2013) and pathogenic Leptospira
(Dobigny et al., 2015). The percentage of landscape covered with the
Niger River was found to have a moderate importance (ca. 10%) which
could not be reliably interpreted. The importance of tarred areas and
concrete was stronger but remains difficult to interpret in terms of
causal relationships since the landscape metrics used in the study are
inherently highly correlated. The difficulty in interpreting our results in
terms of which variables matter most for the organism being modeled is
discussed below.

The areas at risk identified using the models do not match with the
areas colonized by R. rattus identified in Garba et al. (2014) although
this species is a privileged reservoir for T. lewisi (Tatard et al., 2017).
This may reflect the fact that T. lewisi is also largely hosted by other
rodent species in Niamey but our molecular data cannot discard the
presence of different species of Trypanosoma infecting several rodent
species (see discussion in Tatard et al., 2017). Interestingly, our results
show no obvious effect of the age of the district upon the risk since the
models predict high level of risks both in the northern part of the city
(oldest part of the city) and the right bank of the Niger River, which
have been recently urbanized (mid 70s) (Motcho, 2004). Finally the risk
maps produced in this survey do not match with the spatial pattern of
poverty in the city of Niamey (see map p. 115 in Clément, 2000). Apart
from the areas located in the vicinity of the Niger River, the localities
where the risk is the greatest includes some advantaged neighborhoods
such as Yantala Plateau (where, unfortunately, no rodent monitoring
was organized).

4.2. Quantifying urban pattern with landscape metrics

This survey showed that the landscape metrics primarily developed
to characterize natural or semi-natural landscapes provided acceptable
predictors of Trypanosoma-positive rodent occurrences in an urban en-
vironment. This suggests that the form and the structure of urban
landscape drive the providing of suitable habitats for the pathogen and
its hosts, and/or impact the processes implied in its differential dis-
persion over space. The metrics from the different types of land-cover
that were considered here (river, trees, sheet steel, tarred areas…)
proved to be relevant to our modeling objective, but other helpful in-
formation could probably be added to the analysis. Indeed, the land-use
data (e.g., residential, commercial, storage, industrial…) as well as the
very local features (e.g., sanitary indoor conditions, construction types,
food storage,…) would also be precious because they strongly affect the
rodent community as well as rodent abundance within the urban ha-
bitats (Advani, 1995; Bradman et al., 2005; Dehghani et al., 2012;
Garba, 2012; Langton et al., 2001; Murphy and Marshall, 2003; Omudu
and Ati, 2010; Promkerd et al., 2008). Consequently, these factors are
also expected to impact rodent-borne pathogen circulation hence
transmission to human. We therefore believe that, when available, both
land-cover and land-use data should be used to derive landscape me-
trics and to identify those associated with zoonotic risks, something that

we were not able to do here because land-use data lacked. This study
highlighted the effect of the spatial resolution used to compute the
landscape metrics (also referred to as buffer size) upon model results.
The model performances varied according to the scale considered and it
was possible to identify one buffer size for which Maxent performed
better. Such observations were also reported in agro-ecology (Rusch
et al., 2011) or biodiversity (Rossi and van Halder, 2010) studies and
definitely confirms the need for multiscale analysis to adequately
characterize landscape heterogeneity including urban landscapes.

4.3. The problem of data scarcity

The number of occurrences of Trypanosoma-positive rodents is re-
latively low in this study and this prevented us from analyzing the
distribution of the parasite for each rodent species separately. As stated
earlier, in Niamey, rodent species differ in their habits and use of urban
landscape, with one rural group of species (A. niloticus, C. gambianus
and T. gracilis) on the one hand, and one native (M. natalensis) and two
invasive (M. musculus and R. rattus) species strictly linked to human
infrastructures on the other. Garba et al. (2014) showed a clear spatial
segregation between these two species assemblages as well as between
commensal native and invasive rodents. Such a segregation may be
explained by the respective species-specific ecological affinities and the
spatial pattern of their preferred habitats across the city as well as by a
possible ongoing replacement of native species by the recently in-
troduced black rats and domestic mice (Garba et al., 2014). Taking
these elements into consideration, there is little doubt that analyzing
each rodent species epidemiology would have allowed us to better
characterize the landscape-host/parasite relationships and would have
yielded much more precise risk estimation. Species-specific risk maps
could be combined to yield a global risk appraisal based on the same
principle as the ensemble forecasting in species distribution modeling
(Araújo and New, 2007). A recurrent problem with epidemiological
studies in developing countries is the lack of biological data or the
scarcity of contextual information (e.g. here, the map of land-use)
which limits the power of the analyses and models. This is all the more
regrettable since third world cities and peri-urban areas are the places
where such risk assessments are the most urgently needed. Nonetheless,
the results presented in this paper show that it is possible to analyze
small data sets and to obtain useful results.

4.4. Predictive vs. explanatory models

Predictive modeling can be defined as the process of applying a
statistical model or data mining algorithm to data for the purpose of
predicting new or future observations (Shmueli, 2010). The present
study lies in the frame of empirical prediction, and it aims at producing
maps of potential spatial distribution of Trypanosoma-positive rodents.
As underlined by Shmueli (2010), predictive models have only slight
and indirect relation to causal explanation. In our case, putative causal
explanation would start by ranking and further testing the relationships
between the landscape variables contributing to the model. Beyond the
small size of our dataset and the fact that our explanatory variables are
inherently collinear or correlated, it is the complex relationships in the
biological system at hand that make it difficult to hypothesize and to
construct a causal model. For instance, we have very poor knowledge of
the impact of landscape at the local scale upon the ecology of each
rodent species, of the parasite(s) and almost no piece of information
about the flea vectors. In the same line, we know almost nothing about
rodent/flea/trypanosomes/human interactions in the field, something
that is yet pivotal to a good understanding of transmission dynamics. Of
course, such a matter of fact precludes any cause-consequence hy-
pothesis, hence explanatory modeling sensu Shmueli (2010). The
landscape that exhibited the higher importance in the models was the
patch richness density. It conveys very different sources of structuration
such as city history, large scale features (e.g., the Niger River) and some
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local and/or recent features linked to urban planning and changes (e.g.,
the development of urban gardens) (Guèye et al., 2009). Two compo-
sition metrics also contributed to the model though to a lesser extent:
the percentage of local landscape covered with tarred areas on the one
hand, and covered with concrete on the other. These metrics may re-
flect the presence of resources for certain rodents and/or flea vectors
(shops, storage areas) as well as environmental conditions favourable to
rodent/flea/human transmission of trypanosomes. However, the mea-
sure of variable importance must be handled with extreme caution in
particular because of the high level of correlation or the co-linearity
between landscape metrics that complicates the interpretation of ex-
planatory variables (see Dormann et al., 2013).

5. Conclusions

The SDM approach that we presented here aimed at mapping the
distribution of a host-borne zoonotic agent, Trypanosoma spp., within
the city of Niamey, Niger. Although they require quite a time-con-
suming fieldwork, we show here that such inferences could be helpful
in the design of some environmental health strategies. In particular, it
should lead to a better assessment of risk areas, and could thus be useful
for the setting of monitoring programs, public and medical staff
awareness or even vaccination campaigns. In some instances, SDM-
based analysis could also point towards causal and testable hypotheses
about disease maintaining, circulation and transmission to humans,
thus providing new research guidelines.
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