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Simple Summary: Although global change is expected to modify the threat posed by plant pathogens,
not much is known about how a changing climate will affect the epidemiology of generalist vector-
borne diseases. In the present study, we developed a high-throughput screening method to test for
the presence of a deadly plant pathogen, Xylella fastidiosa, in its insect vectors. Based on a four-year
survey in climatically distinct areas of the island of Corsica (France), we found a significant positive
correlation between the frequency of insect vectors positive for X. fastidiosa and temperature. We
observed that a higher prevalence in insects corresponded with milder winters. We used future
climate projections up to the year 2100, and found that the risk for X. fastidiosa outbreak will increase
in the future. While the proportion of vectors that carry the pathogen should increase, the climate
conditions will remain suitable for the bacterium and its main vector, with possible shifts towards
higher elevations. Besides calling for research efforts to limit the incidence of plant diseases in
temperate zones, this works reveals that recent molecular technologies could and should be used for
massive screening of pathogens in vectors in order to scale-up surveillance and management efforts.

Abstract: Global change is expected to modify the threat posed by pathogens to plants. However,
little is known regarding how a changing climate will influence the epidemiology of generalist
vector-borne diseases. We developed a high-throughput screening method to test for the presence of a
deadly plant pathogen, Xylella fastidiosa, in its insect vectors. Then, using data from a four-year survey
in climatically distinct areas of Corsica (France), we demonstrated a positive correlation between
the proportion of vectors positive to X. fastidiosa and temperature. Notably, a higher prevalence
corresponded with milder winters. Our projections up to 2100 indicate an increased risk of outbreaks.
While the proportion of vectors that carry the pathogen should increase, the climate conditions will
remain suitable for the bacterium and its main vector, with possible range shifts towards a higher
elevation. Besides calling for research efforts to limit the incidence of plant diseases in the temperate
zone, this work reveals that recent molecular technologies could and should be used for massive
screening of pathogens in vectors to scale-up surveillance and management efforts.

Keywords: plant health; Xylella fastidiosa; Philaenus spumarius; climate change; spy insect strategy

1. Introduction

Increased globalization of food production and climate change are facilitating the
movement and local establishment of pests and pathogens [1]. The spread of plant
pathogens is jeopardizing food security [2] and biodiversity [3]. Identifying how plants,
pathogens, and their vectors will respond to a changing climate is challenging [4], even
more so for unmanaged ecosystems [4–6]. However, improvements in molecular detection
and climate modelling allow us to model realistic scenarios more accurately. Bacterial
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vector-borne plant diseases represent a major cost to producers worldwide [7], because
they decrease the overall yield and require expensive control measures. Bacteria are mainly
transmitted to plants by Hemipteran insects (e.g., psyllids, leafhoppers, and spittlebugs)
that feed on the mesophyll, phloem, or xylem sap [8]. Climate change is expected to affect
the distribution of vectors and, hence, the geographical range over which diseases are trans-
mitted. Ambient temperature is also an important factor for determining the efficiency with
which vectors transmit pathogens, how well plants can defend themselves, and possibly
the multiplication rate of pathogens within hosts [9]. Despite generalist bacteria posing a
severe and costly threat to both managed and unmanaged systems, it is largely unknown
how they will respond to climate change.

With about 600 host species in over 85 families of wild and cultivated plants, the vector-
borne bacterium Xylella fastidiosa Wells et al. (Xf ) (Xanthomonadaceae) is a worldwide
threat to agriculture, horticulture, forestry, and unmanaged habitats [10]. Biofilm-like
colonies are formed; pectin gels and tyloses are produced by the plant, which reduce the
hydraulic conductivity within the xylem and can lead to plant death [11]. Xf is transmitted
to plants by xylem-feeding hemipterans (mainly sharpshooters and spittlebugs) [12,13].
There is no vertical transmission to offspring and infectivity is lost during molting, although
adults that acquire Xf remain infective for life [13]. Sharpshooters can inoculate Xf with
no latent period [14] and most vectors are polyphagous [12,13], which increases chances
of transmission within and between semi-natural and cultivated habitats. At its center of
origin in the New World, the bacterium has caused more than 100 million USD worth of
losses each year to the Brazilian citrus industry and to the US grape industry [15,16]. Since
the dramatic 2013 outbreak in the olive groves of Southern Italy [17], the presence of Xf has
been confirmed in different Mediterranean regions of Europe (https://gd.eppo.int/taxon/
XYLEFA/distribution, accessed on 13 July 2022). The economic impact on the European
olive industry over 50 years could reach 5.2 billion EUR (5.6 billions USD) depending
on cultivar resistance and effective control of the disease [18]. It is reasonable to expect
that climate change will play a role in the worldwide epidemiology of Xf [19–23], but
too few experimental studies have been conducted so far with which to generate robust
predictions [19,20].

We conducted a four-year survey (2016–2019) across a range of climates in Corsica
(France; Figures 1 and 2), where Xf was detected for the first time in the summer of 2015.
We explored relationships between climate variables (temperature and precipitation) and
the prevalence of Xf in vectors (defined as the proportion of insects that carry Xf in sampled
populations). We also generated hypotheses under a range of global change scenarios for
the future climate suitability of Corsica for Xf and its main vector and for the prevalence of
Xf in vectors. Our results are discussed with consideration regarding what we do, and do
not know, about the pathosystem (Xf, its vectors, and their host feeding plants).

https://gd.eppo.int/taxon/XYLEFA/distribution
https://gd.eppo.int/taxon/XYLEFA/distribution
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Figure 1. Prevalence of X. fastidiosa in populations of insect vectors. The black portion of each 
donut represents the proportion of specimens from which Xf was sequenced. The color of the pies 
shows the score of the sampling sites on PC1 of the PCA performed on climate variables (the warm-
est colors correspond to the highest temperatures). 

Figure 1. Prevalence of X. fastidiosa in populations of insect vectors. The black portion of each
donut represents the proportion of specimens from which Xf was sequenced. The color of the pies
shows the score of the sampling sites on PC1 of the PCA performed on climate variables (the warmest
colors correspond to the highest temperatures).
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Figure 2. Vegetation structure and elevation of the sampling sites. (A) Proportion of each vegeta-
tion structure in all sites sampled (B) Elevation of the sample sites (in the same order as in A). The 
vegetation structure is given within a radius of 1 km around the sampling sites. See also the addi-
tional map. 

2. Materials and Methods 
Sampling sites and collection of specimens—The sampling sites (Figure 1, Table S1, 

supplementary map) were selected with the primary aim of maximizing the range of cli-
matic conditions (climate data retrieved from SAFRAN models (see next section)). Sam-
pling sites were located in various types of vegetation (Figure 2A; vegetation data re-
trieved from the OCS GE database (© IGN—2022, https://geoservices.ign.fr/ocsge, ac-
cessed on 12 July 2022)) and at varying altitudes (Figure 2B). The sampling sites were not 
selected based on official detections of Xf in plants. Indeed, false positive or negative re-
sults may exist and surveillance does not cover all areas because it is almost exclusively 
directed towards symptomatic plants. We considered repeated measures for some sites to 
obtain an idea of the steadiness of Xf prevalence through time. However, as much as pos-
sible and because our aim was not to analyze time series, we selected insect populations 
originating from different sites to minimize data inter-dependence in the data set. Indeed, 
as advocated by Colegrave and Ruxton [24], even if data inter-dependence was now cor-
rectly accounted for by random effects in the generalized linear mixed model (GLMM) 
[25], it remains more powerful to collect independent data. A minimum of 30 adults were 
collected by sweep netting the vegetation at each sampling site (Table S1a). Insects were 
killed on site with ethyl acetate, and were quickly transferred to 8 mL vials filled with 70% 
EtOH and stored in 96% EtOH about 10 days later. The vials were stored at 4 °C until 
DNA extraction. The adults were collected in late October so that they had time to feed 
on infected plants and Xf could multiply in their foregut [26]. 

Prevalence data—Quantitative and conventional PCR are currently established as 
the gold standard when testing for the presence of Xf in plants, but drawbacks regarding 
sensitivity and versatility have been highlighted for vectors [27]. Therefore, we developed 

Figure 2. Vegetation structure and elevation of the sampling sites. (A) Proportion of each vege-
tation structure in all sites sampled (B) Elevation of the sample sites (in the same order as in (A)).
The vegetation structure is given within a radius of 1 km around the sampling sites. See also the
additional map.

2. Materials and Methods

Sampling sites and collection of specimens—The sampling sites (Figure 1, Table
S1, supplementary map) were selected with the primary aim of maximizing the range
of climatic conditions (climate data retrieved from SAFRAN models (see next section)).
Sampling sites were located in various types of vegetation (Figure 2A; vegetation data
retrieved from the OCS GE database (© IGN—2022, https://geoservices.ign.fr/ocsge,
accessed on 12 July 2022)) and at varying altitudes (Figure 2B). The sampling sites were not
selected based on official detections of Xf in plants. Indeed, false positive or negative results
may exist and surveillance does not cover all areas because it is almost exclusively directed
towards symptomatic plants. We considered repeated measures for some sites to obtain an
idea of the steadiness of Xf prevalence through time. However, as much as possible and
because our aim was not to analyze time series, we selected insect populations originating
from different sites to minimize data inter-dependence in the data set. Indeed, as advocated
by Colegrave and Ruxton [24], even if data inter-dependence was now correctly accounted
for by random effects in the generalized linear mixed model (GLMM) [25], it remains more
powerful to collect independent data. A minimum of 30 adults were collected by sweep
netting the vegetation at each sampling site (Table S1a). Insects were killed on site with
ethyl acetate, and were quickly transferred to 8 mL vials filled with 70% EtOH and stored
in 96% EtOH about 10 days later. The vials were stored at 4 ◦C until DNA extraction. The
adults were collected in late October so that they had time to feed on infected plants and Xf
could multiply in their foregut [26].

Prevalence data—Quantitative and conventional PCR are currently established as
the gold standard when testing for the presence of Xf in plants, but drawbacks regarding
sensitivity and versatility have been highlighted for vectors [27]. Therefore, we developed
a high-throughput method to amplify and sequence leuA, one of the housekeeping genes
of Xf [28], in insects. Philaenus spumarius (L.) (Aphrophoridae), the most significant vector
of Xf in Europe [12], was used as a sentinel to track Xf in the environment. DNA was

https://geoservices.ign.fr/ocsge
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extracted from single specimens following Cruaud et al. [27]. A two-step PCR approach
targeting leuA was set up following Cruaud et al. [29]. Details on the protocol are provided
in the Supplementary Material, in Tables S4 and S5. A unique combination of 9-nt indexes
was assigned to each specimen to track index hopping, and four PCR replicates were
performed per insect to reduce false negatives (the same combination of indexes for all
replicates). Sequencing was performed on a MiSeq system (2 × 250 bp). Analysis of
the raw data was adapted from Cruaud et al. [29]. Adapter trimming and the selection
of high quality paired reads was performed with Trimmomatic [30]; paired reads were
merged with FLASH [31]; clustering of sequences was performed with SWARM [32].
Consensuses were aligned to the set of reference sequences available in pubMLST (http:
//pubmlst.org/xfastidiosa, accessed on 12 July 2022) and alignment was visually inspected
in Geneious R11.1.4 (https://www.geneious.com, accessed on 12 July 2022) to discard non-
target amplifications. The complete analytical workflow with examples is available from
https://github.com/acruaud/prevalenceXfinsectclimate_2022 (accessed on 12 July 2022)
and details are provided in Supplementary Material. The two step PCR approach was
used for specimens collected in 2017–2019. Prevalence data for 2016 were retrieved from
a previous study (nested PCR, Sanger sequencing [27]). We note that prevalence data for
2016 were not statistically different from those of the following years (Figure S5).

Climate variables—Twenty-five temperature- and five precipitation-related variables
were computed to describe the climate profile of the sampling sites. Variables were chosen
considering the phenology of P. spumarius in Corsica; literature on the multiplication of Xf in
plants and P. spumarius and, in the absence of knowledge on the epidemiological dynamics
of Xf multiplex in Europe, annual fluctuations of Pierce’s disease incidence in California.
Five time slices were defined (as for growing and dormant seasons for plant/insects:
March–November, December–February, and regarding P. spumarius phenology: March–
June, July–August, and September–October). For each time slice, we computed the daily
mean temperature. For each time slice but for the dormant season, we computed the
maximum temperature of the time slice and the average daily maximum temperature over
the time slice. For the dormant season, we computed the minimum temperature of the
time slice and the average daily minimum temperature over the time slice. Finally, for
the growing season, we computed the number of days with a daily maximal temperature
strictly greater than 16 ◦C, 18 ◦C, 20 ◦C, 22 ◦C, 24 ◦C, and 30 ◦C, while the number of
days with a daily minimum temperature strictly lower than 0 ◦C, 2 ◦C, 4 ◦C, and 6 ◦C
was computed for the dormant season. For each time slice but for the dormant season,
we computed the sum of the daily precipitation. Finally, we computed the sum of the
daily precipitation for the growing season of the year Y-1 (see Supplementary Material and
Table S1a for details). Raw data to compute climate variables were retrieved from Météo
France (SAFRAN model), which interpolates temperature/precipitation measures made
several times a day by a network of over 1000 meteorological stations spread over the French
territory. SAFRAN provides the daily temperature (2 m above ground) and precipitation
data simulated at a resolution of 8 km on an extended Lambert-II projection that were used
to compute the studied climate variables. To estimate future and past climate conditions
under different global circulation models (GCMs) and shared socioeconomic pathways
(SSPs) (Supplementary Material and Table S1b,c), we relied on bioclimatic variables from
the CHELSA v2.1 database (https://chelsa-climate.org, accessed on 12 July 2022).

Statistical analyses—GLMMs were built to analyze the effect of climate variables on
prevalence (binomial distribution). Independent climate variables were built with two
methods. First, a principal component analysis (PCA) was performed on the 30 climate
variables and the scores of the sampling sites on PC1 and PC2 were used as the input
for a first GLMM (GLMM1). Second, a partial least square regression analysis (PLSR)
was conducted to rank climate variables in decreasing importance (using the Variable
Importance on Projection, VIP [33]) regarding the correlation with Xf prevalence. Climate
variables were selected step by step, in decreasing VIP order, with two conditions: VIP > 1
and Spearman correlation coefficient with variables selected in the previous steps lower

http://pubmlst.org/xfastidiosa
http://pubmlst.org/xfastidiosa
https://www.geneious.com
https://github.com/acruaud/prevalenceXfinsectclimate_2022
https://chelsa-climate.org
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than 0.7 [34]. The climate data table for sampling sites reduced to the selected variables
was used as the input for a second GLMM (GLMM2). To account for repeated measures,
we added the random effect of the sample site identifier. The year was included as an
experimental design fixed effect owing to the number of factor levels being below 5. GLMM
validity (correct distribution, dispersion, frequency of outliers, and homoscedasticity) was
ascertained and we tested the significance of the fixed variables in models with type II
analyses of deviance (two-sided type II Wald chi-square tests) (see Supplementary methods
for all details).

Species distribution modelling—Species distribution models (SDMs) were built from
worldwide occurrences of Xf ssp. multiplex and P. spumarius using 12 bioclimatic variables
(Table S3; CHELSA database) and the Maxent algorithm [35] with 10,000 background
points to define the available environmental conditions. The SDMs were used to predict
the species future potential distribution using the same combinations of GCMs and SSPs as
those used to model the future climate profiles of the sampling sites (see Supplementary
methods for all details).

3. Results

Of the 1200 insects tested for Xf (39 populations of P. spumarius across Corsica;
Supplementary Table S1a), 8% were recovered as positive for Xf ssp. multiplex. Prevalence
in insect populations ranged from 0 to 40% (Figure 1, Table S1a). The first (PC1) and second
(PC2) axes of the PCA performed on the 30 climate variables respectively supported 56.7%
and 12.9% of the climate variability. PC1 opposed plots with high temperatures to plots with
low temperatures. PC2 opposed plots with high maximal temperatures and high precipita-
tions during the previous year to plots with high precipitations. In both GLMMs, variables
that were significantly correlated with Xf prevalence were strongly linked to temperature
descriptors (Table S2 and Figure 3). GLMM1 (built from scores of the sampling sites on PC1
and PC2 of the PCA; Figure S1 and Table S1a) and GLMM2 (built from uncorrelated most
explanatory variables according to PLSR) provided similar results, showing that Xf prevalence
in vectors was positively correlated to temperature. In GLMM1, prevalence decreased with
the sampling site score on PC1, meaning that prevalence was higher in sites with higher
temperatures (Figure 3A). GLMM2 identified the number of days from December to February,
with a minimal temperature <6 ◦C (d6C_dec_fev) as the most explanatory variable. A higher
prevalence was predicted under milder winter (Figure 3B).
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To explore the past and future climate profiles of the sampling sites, we computed
the mean temperature of the coldest quarter (bio11), which is the bioclimatic variable that
is the closest to d6C_dec_fev (Figure S2; Spearman’s rank correlation coefficient between
bio11 and d6C_dec_feb for current climate = −0.87)) and for which the past and future
values are publicly available. For all combinations of GCMs and SSPs, a general increase in
winter temperatures (Figure 4 and Table S1b) was predicted. This, together with GLMM
predictions, suggests that milder winters in the future will favour an increase in the
prevalence of Xf in vectors.
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dictions suggest that both Xf and its main vector will keep encountering suitable climate 
conditions in Corsica in the future. In the most extreme scenarios, climate change may 
lead to lower suitability on the coastal areas of Corsica for both partners, but suitable con-
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Figure 4. Past and future projections of temperature for the coldest quarter. (A) Median value of
bio11 (mean temperature of coldest quarter) over all sampling sites projected in the past. (B) Median
value of bio11 over all sampling sites projected in the future under three shared socio-economic
pathways (SSPs, three facets) and five global circulation models (GCMs, five points per facet jittered
along abscissa) that reflect uncertainties regarding the response of humans to climate change and the
evolution of physical processes in the atmosphere, oceans, cryosphere, and land surface, respectively
(see Table S1c for details). The dashed line shows the current median value (for the period 2000–2018).

Only uncorrelated bioclimatic variables (variance inflation factor < 10) were retained
for SDMs (bio5, bio8, bio9, bio10, bio11, bio13, bio17, and bio19 for Xf ; bio5, bio6, bio8, bio9,
bio13, bio14, and bio18 for P. spumarius). The MIAmaxent stepwise model fitting procedure
led to a significant model (p = 6.83 × 10−5) based on four explanatory climate variables for
P. spumarius, namely: bio5 (variable contribution = 53.7%), bio6 (36.6%), bio8 (4.9%), and
bio13 (4.9%). The model was also significant for Xf (p = 1.11 × 10−3) and five variables were
retained, namely: bio11 (60.0%), bio5 (24.1%), bio19 (13.0%), bio9 (1.5%), and bio8 (1.5%).
Both models exhibited good evaluation metrics. The area under the curve (AUC) values
and continuous Boyce indexes (CBI) were 0.822 and 0.992, respectively, for P. spumarius
and 0.993 and 0.976, respectively, for Xf. Figure 5 shows the climate suitability of Corsica
in the form of a consensus model based on the median of the predicted climate suitability
using the model of each species and the five GCMs. Consensus models were computed
for the periods covering 2011–2040 and 2041–2070 for both SSP370 and SSP585 using the
medium to high end of plausible future pathways of greenhouse gas emissions (radiative
forcing reaching respectively 7.0 W/m2 or 8.5 W/m2 in 2100; Table S1c). Other results
(time periods and SSPs) are available in supplementary Figures S3 and S4. All predictions
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suggest that both Xf and its main vector will keep encountering suitable climate conditions
in Corsica in the future. In the most extreme scenarios, climate change may lead to lower
suitability on the coastal areas of Corsica for both partners, but suitable conditions could
be found in areas that were previously unsuitable or less suitable, especially in higher
elevation areas. The surface corresponding to suitable conditions for both species, i.e., for
which there is an overlap between the vector and the pathogen decreases for the most
extreme situations (Table S6, 2071–2100, SSP370 and SSP585), but remains high in all of the
scenarios explored.
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Figure 5. Species distribution modelling. Consensus models showing climate suitability (CS) for
P. spumarius (Ps, (A–D)) and Xf ssp. multiplex (Xf, (E–H)) according to two time periods (2011–2040
and 2041–2070) and two shared socio-economic pathways (SSP370 and SSP585). Climate suitability
is estimated using the Maxent algorithm and climate reference data corresponding to the period of
1981–2010.

4. Discussion

This study has two major outcomes. First, it highlights the power of insect vectors
to track Xf in ecosystems. Currently, the surveillance of Xf is almost exclusively directed
towards symptomatic plants. However, infected vectors have now been recorded twice in
areas supposedly free of Xf based on plant survey (e.g., northwestern and northeastern
Corsica; this study and [27]). These findings clearly indicate the need for alternative early
warning and long-term monitoring systems. Indeed, the surveillance of Xf in plants is
actually more challenging than in insects. First, Xf is heterogeneously distributed within the
plant tissue [36], which can lead to false negatives. This source of false negatives does not
exist with insects for which the whole body is analyzed. In addition, the diversity of PCR
inhibitors associated with numerous Xf host plant matrices adds technical challenges to the
effective detection of the bacterium [37]. Finally, because many species are asymptomatic
to low bacterial loads in natural conditions [23], targeting only symptomatic plants is
not effective. A nuanced understanding of the factors leading to pathogenicity in this
endophytic bacterium requires an explicit inclusion of insect vectors. Insects need to be
surveyed at large scale using cutting-edge molecular tools.
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The second major outcome is that the prevalence in vectors is highly likely to increase
with ambient temperature. It has been established that Xf spread is directly linked to
the abundance of infectious vectors [22], while plant mortality relates to the number of
inoculation events [38]. A corollary of these factors is that areas experiencing milder
winters and warmer springs and falls are at greater risk of new outbreaks. A mechanistic
understanding requires a summary of what is known concerning the effect of temperature
on Xf and its main vector.

Regarding the bacterium, the optimal temperature range may vary among strains of
Xf, but temperatures below 10 ◦C and above 32 ◦C affect the survival of the bacterium
according to in vitro and potted plant experiments [39]. Within this range, increasing
temperatures favor higher multiplication rates [39], with plants achieving an infectious
status faster [20]. Overwinter recovery of plants is observed in natural conditions and
experiments show that exposure to freezing temperatures can lead to temporary or com-
plete remission of symptoms [40]. Plants (vines) inoculated later in the growing season
have better chances of recovery than those inoculated earlier [41]. However, the mecha-
nisms leading to recovery are still not fully understood. Regarding the development of
P. spumarius, data on the influence of temperature are inconsistent [42]. The minimum
temperature for egg hatching and nymphal development ranges from 2.8 ◦C to 10 ◦C,
and development is still observed at 27 ◦C, while the nymphal period becomes shorter
with increasing temperatures [42]. Summer droughts can negatively impact P. spumarius
populations and shifts from dry to less water-stressed plants or migration toward cooler
climates have been documented [43,44]. In Corsica, field observations suggest that low
numbers of adults survive until mid-February [45], while the first nymphs hatch in early
February. Adults are virtually impossible to find in the summer, including in the riparian
vegetation [45]. As such, the effects of temperature on the probing behavior or feeding
rate of P. spumarius are unknown. The same applies for Xf multiplication within the insect
foregut or transmission efficiency. In the US, a positive temperature-dependent transmis-
sion efficiency has been highlighted for some vectors [21] and a higher temperature also
favors flight activity, feeding, and overwinter survival [22].

Our current understanding of vector and pathogen ecology allows us to propose the
following. Milder winters likely increase the overwinter survival of Xf in plants, and the
bacterial load is consequently higher in spring. The multiplication of Xf is favored by
warmer weather during the growing season. A high cell density (which promotes biofilm
formation [46]) is achieved earlier and, consequently, acquisition by insects happens sooner.
A higher temperature in the growing season may also increase vector activity. Vectors
may fly more frequently, disperse further, and take longer meals, which could favor the
acquisition [47] and transmission of Xf. The probability of encounters between vectors
and Xf is thus steadily increasing. A better understanding of the whole process would
require lab and, above all, given the expected discrepancies, field experiments. These field
experiments should primarily be designed to follow bacterial load in insects and plants
throughout the year, but will also help to document unknown aspects of the ecology of
P. spumarius. Of particular interest would be studies on overwinter survival of P. spumarius,
because survival may steadily increase with milder winters. The population size may also
increase and lead to a higher transmission efficiency. All of these factors could affect the
epidemiology of Xf [48]. Obviously, an increased understanding of the environmental
factors on other components of this complex pathosystem is also crucial [49,50].

We show that the prevalence might continue to increase, but how do these factors align
across the pathosystem? Are vector populations, prevalence in vectors, and plant symptoms
all favored by the same climatic conditions? As shown by our SDMs, the effect of climate
on vector populations will probably be context-dependent: conditions becoming hotter and
drier will favor P. spumarius at the cool-moist end of our climatic gradient (i.e., on the most
elevated sites), while they will have an adverse effect on P. spumarius at the hot-dry end of
our gradient (e.g., on sites already experiencing heat waves of up to 37.8 ◦C in summer,
Table S1a). This is in line with the preference of P. spumarius for moist environments in
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Mediterranean climates [42,51] and the preference of vectors for fully irrigated plants [47].
The link between climate and Xf prevalence was clear for temperature, but inconclusive for
precipitation, as none of the precipitation-related variables were retained in our models.
The link between temperature and Xf symptoms is understudied, but Pierce’s disease
severity is expected to be strongest in the warmest places of the Mediterranean basin,
especially in those experiencing mild winters [52]. Finally, a negative feedback loop is likely
to operate between vector populations and symptoms, because vectors strongly prefer
to feed on healthy or asymptomatic plants in controlled conditions [20]. As a result, it is
unlikely that rising temperatures will contribute to an exponential increase in the number
of outbreaks. However, we can anticipate (i) increasing Xf prevalence and symptoms in
the warmest places of Corsica, together with a decrease in P. spumarius abundance, and
(ii) a progression of the Xf pathosystem towards more elevated sites, with the build-up
of large vector populations. It is worth noting that adaptation to climate change for both
partners (e.g., possibly longer aestivation for the vectors) is unknown and may influence
our projections [53]. A final argument against runaway resides in the biology of Xf itself,
which, for most plants, is a commensal exhibiting self-limiting behavior through quorum
sensing [46].

Mitigating the effect of global warming requires knowledge on how the climate may
affect different aspects of plant pathosystems [20]. Here, we provide a first assessment
of how increasing temperatures may affect the prevalence of Xf in vectors. In addition,
increased market globalization is also of concern as it may favor the introduction to Europe
of other efficient vectors (e.g., Homalodisca vitripennis and Graphocephala atropunctata) or
bacterial strains with which hybridizing is possible with unpredictable outcomes [54].

As illustrated here for X. fastidiosa, recent works have suggested that climate change
will result in increasing the burden of plant pathogens at a high latitude in the Northern
Hemisphere, particularly in Europe, China, and the central to eastern US [2,5]. Impact may
vary depending on the ability of natural ecosystems and production systems to adapt [2,5,6].
Preventive and, when possible, curative plant protection have been underlined as key com-
ponents to maintain and preserve current and future food security [5]. However, managed
and unmanaged ecosystem should not be considered as separate compartments [6] with
surveillance mainly targeting symptomatic cultivated plants. Indeed, especially for gener-
alist vector-borne plant diseases, genetically diverse wild plants should be seen as potential
reservoirs of pathogens for crops [6]. Conversely, infected cultivated plants that are intro-
duced at the vicinity of natural ecosystems could become a source of biodiversity loss. In a
rapidly changing world, early warning and long-term monitoring systems are crucial. This
study is an example of how and why new sequencing technologies targeting pathogens
in vectors are essential for scaling up surveillance efforts and protecting plant health. A
blind and massive screening of vectors could also reveal undocumented vector–pathogen
associations that may influence disease dynamics.

5. Conclusions

This study highlights how the surveillance of Xylella fastidiosa could be improved by
using insects in addition to symptomatic plants. Indeed, we show that infected vectors are
found in localities where symptomatic plants have never been recorded. This survey is an
example of how and why new sequencing technologies targeting pathogens in vectors are
essential for scaling up surveillance efforts and long-term monitoring.

Our results clearly indicate that Xf prevalence in its insect vectors is very likely to
increase with ambient temperature. Areas experiencing milder winters and warmer springs
and falls are expected to be at greater risk of outbreaks. Projections of the future potential
distribution of both P. spumarius and X. fastidiosa indicate that although the climate may
alter their current distribution, both species will find suitable climate conditions in more
elevated areas of Corsica.
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31. Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27,
2957–2963. [CrossRef]

32. Mahé, F.; Rognes, T.; Quince, C.; de Vargas, C.; Dunthorn, M. Swarm v2: Highly-scalable and high-resolution amplicon clustering.
PeerJ 2015, 3, e1420. [CrossRef]

33. Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression; Chemometr.
Intell. Lab.: Amsterdam, The Netherlands, 2012; Volume 118, pp. 62–69. [CrossRef]

34. Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al.
Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46.
[CrossRef]

35. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006,
190, 231–259. [CrossRef]

http://doi.org/10.3389/fpls.2016.01163
http://doi.org/10.1038/s41579-019-0222-5
http://doi.org/10.1146/annurev.phyto.45.062806.094342
http://doi.org/10.1127/entomologia/2019/0811
http://doi.org/10.1111/aen.12397
http://doi.org/10.1094/Phyto-69-393
http://doi.org/10.1080/15216540701299326
http://doi.org/10.3733/ca.v068n01p20
http://doi.org/10.1094/PHYTO-08-18-0319-FI
http://doi.org/10.1073/pnas.1912206117
http://doi.org/10.1094/PBIOMES-01-17-0004-R
http://doi.org/10.1111/j.1744-7348.2009.00346.x
http://doi.org/10.1111/j.1365-3059.2012.02611.x
http://doi.org/10.1146/annurev-phyto-080417-045849
http://doi.org/10.1016/j.tree.2017.10.007
http://doi.org/10.1127/entomologia/2021/1294
http://doi.org/10.1038/s41598-018-33957-z
http://doi.org/10.1094/PHYTO-100-6-0601
http://doi.org/10.1038/srep41948
http://doi.org/10.1093/bioinformatics/btu170
http://doi.org/10.1093/bioinformatics/btr507
http://doi.org/10.7717/peerj.1420
http://doi.org/10.1016/j.chemolab.2012.07.010
http://doi.org/10.1111/j.1600-0587.2012.07348.x
http://doi.org/10.1016/j.ecolmodel.2005.03.026


Biology 2022, 11, 1299 13 of 15

36. Holland, R.M.; Christiano, R.S.C.; Gamliel-Atinsky, E.; Scherm, H. Distribution of Xylella fastidiosa in Blueberry Stem and Root
Sections in Relation to Disease Severity in the Field. Plant Dis. 2014, 98, 443–447. [CrossRef] [PubMed]

37. Dupas, E.; Legendre, B.; Olivier, V.; Poliakoff, F.; Manceau, C.; Cunty, A. Comparison of real-time PCR and droplet digital PCR for
the detection of Xylella fastidiosa in plants. J. Microbiol. Methods 2019, 162, 86–95. [CrossRef] [PubMed]

38. Costa, H.S.; Blua, M.S.; Bethke, J.A.; Redak, R.A. Transmission of Xylella fastidiosa to Oleander by the Glassywinged Sharp-shooter,
Homalodisca coagulata. HortScience 2000, 35, 1265–1267. [CrossRef]

39. Feil, H.; Purcell, A.H. Temperature-Dependent Growth and Survival of Xylella fastidiosa in Vitro and in Potted Grapevines. Plant
Dis. 2001, 85, 1230–1234. [CrossRef] [PubMed]

40. Purcell, A.H. Cold therapy of Pierce’s disease of grapevines. Plant Dis. Rep. 1977, 61, 514–518.
41. Feil, H.; Feil, W.S.; Purcell, A.H. Effects of Date of Inoculation on the Within-Plant Movement of Xylella fastidiosa and Persistence

of Pierce’s Disease Within Field Grapevines. Phytopathology 2003, 93, 244–251. [CrossRef]
42. Cornara, D.; Bosco, D.; Fereres, A. Philaenus spumarius: When an old acquaintance becomes a new threat to European agri-culture.

J. Pest Sci. 2018, 91, 957–972. [CrossRef]
43. Cornara, D.; Panzarino, O.; Santoiemma, G.; Bodino, N.; Loverre, P.; Mastronardi, M.G.; Mattia, C.; De Lillo, E.; Addante, R.

Natural areas as reservoir of candidate vectors of Xylella fastidiosa. B. Insectol. 2021, 74, 173–180.
44. Bodino, N.; Cavalieri, V.; Dongiovanni, C.; Plazio, E.; Saladini, M.A.; Volani, S.; Simonetto, A.; Fumarola, G.; Di Carolo, M.;

Porcelli, F.; et al. Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in
olive groves in Italy. Sci. Rep. 2019, 9, 17725. [CrossRef] [PubMed]

45. Albre, J.; Carrasco, J.M.G.; Gibernau, M. Ecology of the meadow spittlebug Philaenus spumarius in the Ajaccio region (Corsica)—I:
Spring. Bull. Èntomol. Res. 2020, 111, 246–256. [CrossRef] [PubMed]

46. Roper, C.; Castro, C.; Ingel, B. Xylella fastidiosa: Bacterial parasitism with hallmarks of commensalism. Curr. Opin. Plant Biol.
2019, 50, 140–147. [CrossRef]

47. Krugner, R.; Backus, E.A. Plant Water Stress Effects on Stylet Probing Behaviors of Homalodisca vitripennis (Hemiptera:
Cicadellidae) Associated with Acquisition and Inoculation of the Bacterium Xylella fastidiosa. J. Econ. Èntomol. 2014, 107, 66–74.
[CrossRef] [PubMed]

48. Daugherty, M.P.; Almeida, R.P.P. Understanding How an Invasive Vector Drives Pierce’s Disease Epidemics: Seasonality and
Vine-to-Vine Spread. Phytopathology 2019, 109, 277–285. [CrossRef] [PubMed]

49. Almeida, R.P.; Blua, M.J.; Lopes, J.R.; Purcell, A.H. Vector Transmission of Xylella fastidiosa: Applying Fundamental Knowledge
to Generate Disease Management Strategies. Ann. Èntomol. Soc. Am. 2005, 98, 775–786. [CrossRef]

50. Mesmin, X.; Chartois, M.; Borgomano, S.; Rasplus, J.Y.; Rossi, J.P.; Cruaud, A. Interaction networks between spittlebugs and
plants in and around olive and clementine groves of Corsica; implications for the management of Xylella fastidiosa. Agr. Ecosyst.
Environ. 2022, 334, 107979. [CrossRef]

51. Godefroid, M.; Morente, M.; Schartel, T.; Cornara, D.; Purcell, A.; Gallego, D.; Moreno, A.; Pereira, J.A.; Fereres, A. Climate
tolerances of Philaenus spumarius should be considered in risk assessment of disease outbreaks related to Xylella fastidiosa. J. Pest.
Sci. 2021, 95, 855–868. [CrossRef]

52. Godefroid, M.; Cruaud, A.; Streito, J.C.; Rasplus, J.Y.; Rossi, J.P. Climate change and the potential distribution of Xylella fas-tidiosa
in Europe. bioRxiv 2018. [CrossRef]

53. Hällfors, M.H.; Liao, J.; Dzurisin, J.; Grundel, R.; Hyvärinen, M.; Towle, K.; Wu, G.C.; Hellmann, J.J. Addressing potential local
adaptation in species distribution models: Implications for conservation under climate change. Ecol. Appl. 2016, 26, 1154–1169.
[CrossRef]

54. Vanhove, M.; Retchless, A.C.; Sicard, A.; Rieux, A.; Coletta-Filho, H.; De La Fuente, L.; Stenger, D.C.; Almeida, R.P.P. Genomic
Diversity and Recombination among Xylella fastidiosa Subspecies. Appl. Environ. Microbiol. 2019, 85, e02972-18. [CrossRef]
[PubMed]

55. EPPO PM 7/24 (4) Xylella Fastidiosa. EPPO Bull. 2019, 49, 175–227. [CrossRef]
56. Marshall, O.J. PerlPrimer: Cross-Platform, Graphical Primer Design for Standard, Bisulphite and Real-Time PCR. Bioinformatics

2004, 20, 2471–2472. [CrossRef] [PubMed]
57. Marcelletti, S.; Scortichini, M. Genome-Wide Comparison and Taxonomic Relatedness of Multiple Xylella Fastidiosa Strains Reveal

the Occurrence of Three Subspecies and a New Xylella Species. Arch. Microbiol. 2016, 198, 803–812. [CrossRef]
58. Martin, J.-F. Creating Error-Proof Indexes for High Throughput Sequencing 2019. Methods Mol. Biol. 2019, 840, 197–228.
59. Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4,

e2584. [CrossRef]
60. Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability.

Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef]
61. Wistrom, C.; Purcell, A.H. The Fate of Xylella Fastidiosa in Vineyard Weeds and Other Alternate Hosts in California. Plant Dis.

2005, 89, 994–999. [CrossRef]
62. Lieth, J.H.; Meyer, M.M.; Yeo, K.-H.; Kirkpatrick, B.C. Modeling Cold Curing of Pierce’s Disease in Vitis Vinifera ‘Pinot Noir’ and

‘Cabernet Sauvignon’ Grapevines in California. PhytopathologyTM 2011, 101, 1492–1500. [CrossRef]
63. Purcell, A. Paradigms: Examples from the Bacterium Xylella Fastidiosa. Annu. Rev. Phytopathol. 2013, 51, 339–356. [CrossRef]
64. Hewitt, W.B.; Frazier, N.W.; Freitag, J.H.; Winkler, A.J. Pierce’s Disease Investigations. Hilgardia 1949, 19, 207–264.

http://doi.org/10.1094/PDIS-06-13-0680-RE
http://www.ncbi.nlm.nih.gov/pubmed/30708723
http://doi.org/10.1016/j.mimet.2019.05.010
http://www.ncbi.nlm.nih.gov/pubmed/31125573
http://doi.org/10.21273/HORTSCI.35.7.1265
http://doi.org/10.1094/PDIS.2001.85.12.1230
http://www.ncbi.nlm.nih.gov/pubmed/30831782
http://doi.org/10.1094/PHYTO.2003.93.2.244
http://doi.org/10.1007/s10340-018-0966-0
http://doi.org/10.1038/s41598-019-54279-8
http://www.ncbi.nlm.nih.gov/pubmed/31776426
http://doi.org/10.1017/S0007485320000711
http://www.ncbi.nlm.nih.gov/pubmed/33355061
http://doi.org/10.1016/j.pbi.2019.05.005
http://doi.org/10.1603/EC13219
http://www.ncbi.nlm.nih.gov/pubmed/24665686
http://doi.org/10.1094/PHYTO-07-18-0217-FI
http://www.ncbi.nlm.nih.gov/pubmed/30451633
http://doi.org/10.1603/0013-8746(2005)098[0775:VTOXFA]2.0.CO;2
http://doi.org/10.1016/j.agee.2022.107979
http://doi.org/10.1007/s10340-021-01413-z
http://doi.org/10.1101/289876
http://doi.org/10.1890/15-0926
http://doi.org/10.1128/AEM.02972-18
http://www.ncbi.nlm.nih.gov/pubmed/31028021
http://doi.org/10.1111/epp.12575
http://doi.org/10.1093/bioinformatics/bth254
http://www.ncbi.nlm.nih.gov/pubmed/15073005
http://doi.org/10.1007/s00203-016-1245-1
http://doi.org/10.7717/peerj.2584
http://doi.org/10.1093/molbev/mst010
http://doi.org/10.1094/PD-89-0994
http://doi.org/10.1094/PHYTO-08-10-0207
http://doi.org/10.1146/annurev-phyto-082712-102325


Biology 2022, 11, 1299 14 of 15

65. R Core Team. R Version 3.5.1 (Feather Spray): A Language and Environment for Statistical Computing; R Foundation for Statistical
Computing: Vienna, Austria, 2018; Available online: Https://Www.R-Project.Org/ (accessed on 12 July 2022).

66. Quintana-Seguí, P.; Le Moigne, P.; Durand, Y.; Martin, E.; Habets, F.; Baillon, M.; Canellas, C.; Franchisteguy, L.; Morel, S. Analysis
of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France. J. Appl. Meteorol. Climatol. 2008, 47,
92–107. [CrossRef]

67. Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M.
GlmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9,
378–400. [CrossRef]

68. Chessel, D.; Dufour, A.-B.; Thioulouse, J. The Ade4 Package—I: One-Table Methods. R News 2004, 4, 5–10.
69. Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.

[CrossRef]
70. Faraway, J.J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models; Chapman and

Hall/CRC: Boca Raton, FL, 2006.
71. Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized Linear Mixed

Models: A Practical Guide for Ecology and Evolution. Trends Ecol. Evol. 2009, 24, 127–135. [CrossRef] [PubMed]
72. Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. 2020. Available online:

https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (accessed on 12 July 2022).
73. Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Social Sciences Mcmaster: Thousand Oaks, CA, USA, 2019.
74. Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2021. Available online: https://cran.r-project.org/

web/packages/emmeans/emmeans.pdf (accessed on 12 July 2022).
75. Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [CrossRef]
76. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M.

Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [CrossRef]
77. Xu, T.; Hutchinson, M. ANUCLIM Version 6.1 User Guide; Australia National University: Canberra, Australia, 2011.
78. Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling. Available online: https://cran.r-project.

org/web/packages/dismo/dismo.pdf (accessed on 12 July 2022).
79. Karger, D.N.; Schmatz, D.R.; Dettling, G.; Zimmermann, N.E. High-Resolution Monthly Precipitation and Temperature Time

Series from 2006 to 2100. Sci. Data 2020, 7, 248. [CrossRef]
80. Buisson, L.; Thuiller, W.; Casajus, N.; Lek, S.; Grenouillet, G. Uncertainty in Ensemble Forecasting of Species Distribution. Glob.

Change Biol. 2010, 16, 1145–1157. [CrossRef]
81. O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A New Scenario Framework

for Climate Change Research: The Concept of Shared Socioeconomic Pathways. Clim. Change 2014, 122, 387–400. [CrossRef]
82. Godefroid, M.; Cruaud, A.; Streito, J.-C.; Rasplus, J.-Y.; Rossi, J.-P. Xylella Fastidiosa: Climate Suitability of European Continent.

Sci. Rep. 2019, 9, 8844. [CrossRef] [PubMed]
83. Falsini, S.; Tani, C.; Sambuco, G.; Papini, A.; Faraoni, P.; Campigli, S.; Ghelardini, L.; Bleve, G.; Rizzo, D.; Ricciolini, M.; et al.

Anatomical and Biochemical Studies of Spartium Junceum Infected by Xylella fastidiosa Subsp. Multiplex ST 87. Protoplasma 2021,
259, 103–115. [CrossRef] [PubMed]

84. Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial Filtering to Reduce Sampling Bias Can Improve the Performance
of Ecological Niche Models. Ecol. Model. 2014, 275, 73–77. [CrossRef]

85. Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. SpThin: An R Package for Spatial Thinning of
Species Occurrence Records for Use in Ecological Niche Models. Ecography 2015, 38, 541–545. [CrossRef]

86. Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-Only
Distribution Models: Implications for Background and Pseudo-Absence Data. Ecol. Appl. 2009, 19, 181–197. [CrossRef]

87. Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where Is Positional Uncertainty a Problem for Species
Distribution Modelling? Ecography 2014, 37, 191–203. [CrossRef]

88. Varela, S.; Anderson, R.P.; García-Valdés, R.; Fernández-González, F. Environmental Filters Reduce the Effects of Sampling Bias
and Improve Predictions of Ecological Niche Models. Ecography 2014, 2014, 1084–1091. [CrossRef]

89. VanDerWal, J.; Shoo, L.P.; Graham, C.; Williams, S.E. Selecting Pseudo-Absence Data for Presence-Only Distribution Modeling:
How Far Should You Stray from What You Know? Ecol. Model. 2009, 220, 589–594. [CrossRef]

90. Seabra, S.G.; Rodrigues, A.S.B.; Silva, S.E.; Neto, A.C.; Pina-Martins, F.; Marabuto, E.; Thompson, V.; Wilson, M.R.; Yurtsever, S.;
Halkka, A.; et al. Population Structure, Adaptation and Divergence of the Meadow Spittlebug, Philaenus Spumarius (Hemiptera,
Aphrophoridae), Revealed by Genomic and Morphological Data. PeerJ 2021, 9, e11425. [CrossRef]

91. Vollering, J.; Halvorsen, R.; Mazzoni, S. The MIAmaxent R Package: Variable Transformation and Model Selection for Species
Distribution Models. Ecol. Evol. 2019, 9, 12051–12068. [CrossRef] [PubMed]

92. Mazzoni, S.; Halvorsen, R.; Bakkestuen, V. MIAT: Modular R-Wrappers for Flexible Implementation of MaxEnt Distribution
Modelling. Ecol. Inform. 2015, 30, 215–221. [CrossRef]

93. Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models.
Environ. Conserv. 1997, 24, 38–49. [CrossRef]

Https://Www.R-Project.Org/
http://doi.org/10.1175/2007JAMC1636.1
http://doi.org/10.32614/RJ-2017-066
http://doi.org/10.1016/S0169-7439(01)00155-1
http://doi.org/10.1016/j.tree.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/19185386
https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
https://cran.r-project.org/web/packages/emmeans/emmeans.pdf
https://cran.r-project.org/web/packages/emmeans/emmeans.pdf
http://doi.org/10.1002/bimj.200810425
http://doi.org/10.1038/sdata.2017.122
https://cran.r-project.org/web/packages/dismo/dismo.pdf
https://cran.r-project.org/web/packages/dismo/dismo.pdf
http://doi.org/10.1038/s41597-020-00587-y
http://doi.org/10.1111/j.1365-2486.2009.02000.x
http://doi.org/10.1007/s10584-013-0905-2
http://doi.org/10.1038/s41598-019-45365-y
http://www.ncbi.nlm.nih.gov/pubmed/31222007
http://doi.org/10.1007/s00709-021-01640-2
http://www.ncbi.nlm.nih.gov/pubmed/33860374
http://doi.org/10.1016/j.ecolmodel.2013.12.012
http://doi.org/10.1111/ecog.01132
http://doi.org/10.1890/07-2153.1
http://doi.org/10.1111/j.1600-0587.2013.00205.x
http://doi.org/10.1111/j.1600-0587.2013.00441.x
http://doi.org/10.1016/j.ecolmodel.2008.11.010
http://doi.org/10.7717/peerj.11425
http://doi.org/10.1002/ece3.5654
http://www.ncbi.nlm.nih.gov/pubmed/31832144
http://doi.org/10.1016/j.ecoinf.2015.07.001
http://doi.org/10.1017/S0376892997000088


Biology 2022, 11, 1299 15 of 15

94. Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the Ability of Habitat Suitability Models to Predict Species
Presences. Ecol. Model. 2006, 199, 142–152. [CrossRef]

95. Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S. Presence-Only Modelling
Using MAXENT: When Can We Trust the Inferences? Methods Ecol. Evol. 2013, 4, 236–243. [CrossRef]

96. Streito, J.-C.; Chartois, M.; Pierre, É.; Dusoulier, F.; Armand, J.-M.; Gaudin, J.; Rossi, J.-P. Citizen Science and Niche Modeling to
Track and Forecast the Expansion of the Brown Marmorated Stinkbug Halyomorpha Halys (Stål, 1855). Sci. Rep. 2021, 11, 11421.
[CrossRef]

97. Broennimann, O.; Cola, V.D.; Guisan, A. Ecospat: Spatial Ecology Miscellaneous Methods; 2020. Available online: https:
//cran.r-project.org/web/packages/ecospat/index.html (accessed on 12 July 2022).

98. Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An Improved Dual-Indexing Approach for
Multiplexed 16S RRNA Gene Sequencing on the Illumina MiSeq Platform. Microbiome 2014, 2, 1. [CrossRef]

99. Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2017. Available online:
https://cran.r-project.org/web/packages/factoextra/readme/README.html (accessed on 12 July 2022).

100. Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. 2017. Available online: https://scirp.org/
reference/referencespapers.aspx?referenceid=3067218 (accessed on 12 July 2022).

http://doi.org/10.1016/j.ecolmodel.2006.05.017
http://doi.org/10.1111/2041-210x.12004
http://doi.org/10.1038/s41598-021-90378-1
https://cran.r-project.org/web/packages/ecospat/index.html
https://cran.r-project.org/web/packages/ecospat/index.html
http://doi.org/10.1186/2049-2618-2-6
https://cran.r-project.org/web/packages/factoextra/readme/README.html
https://scirp.org/reference/referencespapers.aspx?referenceid=3067218
https://scirp.org/reference/referencespapers.aspx?referenceid=3067218

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

