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• We model the range of the invasive insect
Homalodisca vitripennis.

• Current climate conditions allow potential
geographical expansion.

• The effect of climate change varies accord-
ing to the continent considered.

• Anticipating the risk of biological invasion
is a key aspect of nations' biosecurity.
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Biological invasions represent a major threat for biodiversity and agriculture. Despite efforts to restrict the spread of
alien species, preventing their introduction remains the best strategy for an efficient control. In that context prepared-
ness of phytosanitary authorities is very important and estimating the geographical range of alien species becomes a
key information. The present study investigates the potential geographical range of the glassy-winged sharpshooter
(Homalodisca vitripennis), a very efficient insect vector of Xylella fastidiosa, one of the most dangerous plant-
pathogenic bacteria worldwide. We use species distribution modeling (SDM) to analyse the climate factors driving
the insect distribution and we evaluate its potential distribution in its native range (USA) and in Europe according
to current climate and different scenarios of climate change: 6 General Circulation Models (GCM), 4 shared socioeco-
nomic pathways of gas emission and 4 time periods (2030, 2050, 2070, 2090). The first result is that the climate con-
ditions of the European continent are suitable to the glassy-winged sharpshooter, in particular around the
Mediterranean basinwhereX. fastidiosa is present. Projections according to future climate conditions indicate displace-
ment of climatically suitable areas towards the north in both North America and Europe. Globally, suitable areas will
decrease inNorth America and increase in Europe in the coming decades. SDMoutputs vary according to theGCM con-
sidered and this variability indicated areas of uncertainty in the species potential range. Both potential distribution and
its uncertainty associated to future climate projections are important information for improved preparedness of
phytosanitary authorities.
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1. Introduction

Ongoing rapid climate change is a major driver of biodiversity reorgani-
zation and causes shifts of species distribution (Wallingford et al., 2020). As
a consequence of an increasingly connected world, biological invasions are
in parallel becoming a major environmental problem (Pyšek et al., 2020).
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The impact of climate change on bioinvasion dynamics and species range
shifts is complex to anticipate. Indeed, climate warming induces contrasted
effects depending on the taxonomical group concerned and the region con-
sidered (Bellard et al., 2013; Bradley et al., 2010; Diamond, 2018;
McMahon et al., 2021).Many exotic species exhibit expanding distributions
often leading to direct negative effects viamechanisms such as competition,
predation or the alteration of certain ecosystem processes (Pyšek et al.,
2020) or indirect effects (invasive species altering the interactions between
2 or more native of invasive species) (White et al., 2006). Biological inva-
sions are also the cause of huge economic losses at a worldwide scale. For
example, Diagne et al. (2021) estimated an annual mean cost of US$ 26.8
billion over the past few decades (1970–2017). Despite efforts to restrict
the spread of alien species, preventing their introduction remains the best
strategy to efficiently control biological invasions. This highlights the im-
portance of identifying potential invaders and areas at risk in order to estab-
lish a minimum level of emergency preparedness (Bradshaw et al., 2016;
Fournier et al., 2019). Such ex-ante approach involves preplanned rapid-
response capability, expert workforce and prior knowledge of the risk asso-
ciated with potential invasive species under current and future climate con-
ditions (Maino et al., 2021; Ricciardi et al., 2011).

Species Distribution Models (SDM) are well-known tools to model the
climatic niche of species and to assess areas with suitable climatic condi-
tions. They are therefore useful to identify areas where increasing surveil-
lance and public information would be beneficial (Guisan et al., 2017).
Furthermore, using SDM in conjunction with scenarios of climate change
allows to estimate areas that would become suitable in the future i.e.
areas at risk (Baquero et al., 2021; Godefroid et al., 2020; Hijmans and
Graham, 2006; Urvois et al., 2021). However, themethodological decisions
taken during the modeling process may lead to uncertainty in the predic-
tion of future distributions (Bagchi et al., 2013; Buisson et al., 2010). The
choice of the Global Circulation Models (GCM) accounts for a substantial
proportion of this uncertainty (Buisson et al., 2010). Furthermore, the di-
vergence between climate projections tends to increase when considering
periods that are further in the future: atmospheric CO2 concentrations are
similar for the different shared socioeconomic pathways of gas emission
until 2050 and then change (Kirtman et al., 2013; Lawrence et al., 2021).
GCM mostly rely on similar assumptions but are parameterized with a
slightly different set of conditions. This produces partially similar outputs
with regionalized discrepancies (Shiogama et al., 2021). SDM fed with dif-
ferent GCM produce somewhat diverging outputs and this variability can
be handled using ensemble models (Thuiller et al., 2019). Such differences
contribute to the uncertainty associated with SDM outputs when assessing
potential future species distribution. For that reason, it is recommended not
to use a limited number of GCM (Thuiller et al., 2019) and a sensible choice
could be guided by accounting for GCM interdependency (Anil et al., 2021;
Sanderson et al., 2015; Shiogama et al., 2021; Whetton et al., 2012). SDM-
related uncertainty should not be neglected and is a key aspect for pre-
paredness and response to arrival of alien species.

Plant-vector-pathogen interactions are altered by environmental
changes among which climate change and by the disruption of local com-
munities that follows biological invasions (Chaloner et al., 2021; Islam
et al., 2020). Hereafter we focus on the glassy-winged sharpshooter,
Homalodisca vitripennis (Germar, 1821), a sap-sucking leafhopper that
plays an important role in transmitting the endophytic bacterium Xylella
fastidiosa. Homalodisca is a small genus of sharpshooters, that comprises
18 species mostly distributed in Central and South America. H. vitripennis
is native to southeastern United States and northeastern Mexico
(Sorensen and Gill, 1996). The species transmits the endophytic bacterium
X. fastidiosa that causes tremendous economic losses associated with the
Pierce's disease of grapevines (Tumber et al., 2014), the olive quick decline
(Schneider et al., 2020), the bacterial leaf scorch (Hearon et al., 1980), the
phony peach disease (Wells, 1983). Since itsfirst detection in Europe (Italy)
in 2013 (Saponari et al., 2013), X. fastidiosa has been detected in several
European countries and is now considered a serious threat to numerous
plants of economic importance (EFSA Panel on Plant Health et al., 2018)
and to forests. In Europe, for example, Schneider et al. (2020) modelled
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the economic impact of X. fastidiosa subspecies pauca on the Italian olive in-
dustry. In their worst-case scenario the potential economic impact over 50 y
ranges from 1.9 billion to 5.2 billion Euros. Europe climate has been shown
to be suitable for various subspecies of the bacterium (Godefroid et al.,
2019) and the European fauna comprises native vectors of X. fastidiosa
such as Philaenus spumarius (Cornara et al., 2016), P. italosignus and
Neophilaenus campestris (Cavalieri et al., 2019) belonging to the
Aphrophoridae.

H. vitripennis is a very efficient vector of X. fastidiosa because it has a
large host range, has the ability to feed on woody tissue (Redak et al.,
2004) and can have 2 to 3 distinct generations annually (Hummel et al.,
2006). H. vitripennis is absent from Europe but has successfully established
in California before 1990 (Sorensen and Gill, 1996). The species also colo-
nized various part of the world outside Northern and Central America
(French Polynesia, Hawaii and Easter Island, as well as the Cook Islands)
(Grandgirard et al., 2006; Petit et al., 2008) which highlights its invasive
potential (Rathé et al., 2015). Many studies have been undertaken to
model different aspects ofH. vitripennis population dynamics and its impact
on the epidemiology of X. fastidiosa (reviewed in Lessio and Alma, 2021).
Hoddle (2004) modelled the current geographical range using the
CLIMEX model and showed that most grape production areas worldwide
show favorable climate conditions. European preparedness towards
X. fastidiosa threat should account for the bacterium vectors and alien
vectors not already present should be carefully considered. The objectives
of the present study are two-fold. First, we aimed at assessing the potential
distribution of H. vitripennis in Europe according to current climate condi-
tions and forecasting its potential range shifts in the future according to a
large set of climate projections i.e. 6 General Circulation Model, 4 shared
socioeconomic pathways of gas emission (SSP) and 4 time periods to eval-
uate the risk of establishment in case of introduction. The second aim was
to explore GCM-induced variability of SDM outputs to identify geographi-
cal regions where models may disagree, which models would lead to dis-
similar SDM outputs and how such variation change according to the
periods considered. These results were intended to feed the discussion on
the use of future climate projection of agricultural pests in a context of pre-
paredness of sanitary crises.

2. Material and methods

All data analyses, calculations and graphs were made using the R lan-
guage for statistical computing (R Core Team, 2021).

2.1. Occurrence datasets

Occurrence data were retrieved from the GBIF database (GBIF.org,
2021) and additional points were gathered from literature (Supplementary
material Table S1). We considered all available occurrences (both native
and invasive range). We examined the issues associated to each record re-
trieved from the GBIF database. Four issueswere considered as problematic
regarding occurrence validity: txmatfuz (TAXON_MATCH_FUZZY), gdativ
(GEODETIC_DATUM_INVALID) and rdativ (RECORDED_DATE_INVALID).
All points associated to one of these labels were excluded from further anal-
ysis. Points were associated to different climate data according to the date
of observation. Two periods were considered: 2001–2018 and before
2001. Observations dating before 2001 were associated to the climate
data covering the period 1970–2000 while a climate dataset was generated
formore recent observations (see below). Occurrence points are depicted in
supplementary Fig. S1A.

A total of 1594 occurrences were retrieved form the GBIF database off
which 1591 were retained after removing the problematic records to
which 21 occurrences points collected from the literature were added lead-
ing to a final dataset comprising 1612 occurrence records. In 9 cases, no ob-
servation date was available, 15 records predated 1970, 10 records
occurred between 1971 and 2000, and 1578 were posterior to 2000. Data
with missing date were removed while points predating 1970 were gath-
ered with points dating from the 1970–2000 period. We ended with 2
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groups of occurrences representing 25 and 1578 occurrences associated
with 1970–2000 and 2001–2018 periods respectively. Only one point per
raster grid cell (see below) was retained to prevent over-representation of
certain climate conditions (Elith et al., 2006). This led to retain 19 and
703 occurrences records for 1970–2000 and 2001–2018 periods respec-
tively. Subsequent analyses were thus based on a set of 19 + 703 = 722
occurrences. The environmental filtering (see below Section 2.4) led to
retaining 537 occurrence records (74.37 % of the initial dataset).

2.2. Climate datasets

2.2.1. Current conditions
We used the climate dataset available from the worldclim database v2.1

(https://www.worldclim.org) (Fick and Hijmans, 2017). The database pro-
vides a set of average climate values for the period 1970–2000 considered
to be representative of near present historical climate data. However, be-
cause of climatic change, these historical climate descriptors may be inap-
propriate when dealing with recent observations of H. vitripennis. For that
reason, we retrieved a second type of dataset fromworldclim: the historical
monthly weather data. We used these datasets to compute the average cli-
mate descriptors for the period 2001–2018 using the function biovars
from the R package dismo (Hijmans et al., 2021). This allowed us to attri-
bute our occurrences of H. vitripennis to two sets of climate descriptors
(1970–2000 and 2001–2018) according to the date when the species re-
cord was made (dynamic SDM sensu Milanesi et al., 2020). The resolution
of the data is 2.5 min (≈21 km2).

2.2.2. Future climate
We used future climate projections for four periods (CMIP6: Eyring

et al., 2016) spanning from 2020 to 2100 (2021–2040, 2041–2060,
2061–2080 and 2081–2100). In each case we considered 6 Global Circula-
tion Models (GCM): BCC-CSM2-MR (Wu et al., 2019), CNRM-CM6-1
(Voldoire et al., 2019), CNRM-ESM2-1 (Séférian et al., 2019), CanESM5
(Swart et al., 2019), MIROC-ES2L (Hajima et al., 2020), MIROC6 (Tatebe
et al., 2019). For each period and GCM we assessed climate suitability ac-
cording to four Shared Socioeconomic Pathways. Shared Socioeconomic
Pathways (SSPs) are reference pathways describing plausible alternative
scenarios of the evolution of society and ecosystems (Meinshausen et al.,
2020). They are used to infer greenhouse gas emissions scenarios according
to different climate policies (Riahi et al., 2017). We used SSP585, SSP370,
SS245 and SSP126 that represent the high end, the medium to high end,
medium part and the low end of the range of future forcing pathways re-
spectively (Abram et al., 2019). This led to 4 × 6 × 4 = 96 climate suit-
ability estimations. Future climate data have the same resolution as the
current climate data.

2.3. Climate descriptors

Choosing the predictors used in a SDM has a profound effect upon the
transferability of the resulting model (Petitpierre et al., 2017). The climate
datasets considered for modelingH. vitripennis included 11 climate descrip-
tors representing both temperature and water constraints. Three variables
described temperature variability: mean diurnal temperature range (re-
ferred to as bio2 in the worldclim database), isothermality (bio3) and tem-
perature seasonality (bio4). Four variables depicted acute temperature or
water stress: maximum temperature of warmest month (bio5), minimum
temperature of coldest month (bio6), precipitation of the wettest month
(bio13) and precipitation of the driest month (bio14). Four variables repre-
sented average temperature or precipitation over 3 months periods: mean
temperature of warmest quarter (bio10),mean temperature of coldest quar-
ter (bio11), precipitation of the wettest quarter (bio16) and the precipita-
tion of the driest quarter (bio17). For each variable we realized an initial
examination of the patterns in occurrence bymeans of the frequency of ob-
served presences (FOP) as described in Vollering et al. (2019) (supplemen-
tary Fig. S2). FOP consists of a plot of the observed occurrence rates against
intervals of the climate descriptors. It shows how commonly the species
3

occurs across the range of the climate descriptors (Halvorsen, 2013). Vari-
ables associated to very noisy or bimodal FOP were discarded form further
analyses to ensure that the model produces ecologically realistic andmean-
ingful response curves (Guevara et al., 2018). This initial data preparation
step led to retain 7 variables: bio4, bio5, bio6, bio10, bio11, bio13 and
bio16. Some explanatory variables may be collinear with possible effects
upon species distribution models (but see Feng et al., 2019). This point is
discussed below.

2.4. Model algorithm and calibration

We modelled the distribution of H. vitripennis with the Maxent algo-
rithm (Phillips and Dudík, 2008) because it does not require absence data
stricto sensu but rather background points and is considered to perform
well when to assess climate suitability in future climate conditions (Elith
et al., 2006). Maxent is a general-purpose machine learning method relying
on presence points and a set of background locations. Background points
are not interpreted as absence data but rather provide a description of the
range of climate conditions across the study area (Elith et al., 2010). We
used the implementation of the Maxent algorithm proposed by Vollering
et al. (2019) in the R package MIAmaxent. The advantage of that approach
is that it implements a forward stepwise selection procedure allowing to se-
lect a subset of transformed explanatory variables in the model calibration.
As a consequence, the resulting model is less complex which improves its
generalizability (Mazzoni et al., 2015) hence our ability to use the model
outside of the spatial or temporal context of the data.

The climate descriptors (explanatory variables) used in the present
study are continuous andwere transformed according tofive types of trans-
formation: linear,monotonous, deviation, forward hinge, reverse hinge and
threshold (Halvorsen, 2013; Phillips and Dudík, 2008). An infinity of trans-
formations is possible for spline-type transformations (i.e. forward hinge,
reverse hinge and threshold) and the R package MIAmaxent allows to auto-
matically identify the ones that best explain the variation in the data (see
package documentation and Vollering et al., 2019). The transformed vari-
ables were submitted to the forward stepwise selection as described in
Vollering et al. (2019) and Halvorsen (2013). At the end of the procedure,
the climate descriptors represented by the transformed variables explaining
a significant amount of variation in the response variable i.e. species
presence-absence data are identified. A very interesting aspect of this proce-
dure is that it accounts for collinearity between explanatory variables dur-
ing the selection procedure (Vollering et al., 2019) hence relaxing the
well-known problem associated to collinearity in model calibration
(Dormann et al., 2013). We used significance threshold α = 0.01 during
the selection procedure. Once the final model was established, we esti-
mated the contribution of the explanatory variables to the model as the
fraction of total variation they accounted for (Halvorsen et al., 2015)
using the MIAmaxent function calculateFTVA.

Occurrence data originate from heterogeneous sources and are subject
to possible bias which may alter model performances (Kramer-Schadt
et al., 2013). We dealt with that difficulty by using an environmental filter-
ing approach (Varela et al., 2014). We performed a Principal Component
Analysis (PCA) (Legendre and Legendre, 2012) on the dataset formed by
the different climate descriptors documented at each occurrence location.
The range of the occurrence scores upon the first axis of the PCA was di-
vided in 150 bins. Bins of similar amplitude were used to divide the second
axis of the PCA leading to a square grid. Occurrence thinning was realized
using the following rule: when several occurrence points fell in the same
grid cell, one point was randomly selected and retained to calibrate the
model while the other occurrences would be used for model evaluation
(see below).

2.5. Background points

Background points were randomly distributed within a large area com-
prising the occurrences (longitude ranging from−170 to−70 decimal de-
grees and latitude ranging from 15 to 40 dd). Two sets of 10,000

https://www.worldclim.org
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background points were generated (Phillips and Dudík, 2008). One was
used for model calibration and the remaining was used for model evalua-
tion using AUC (see below). Background points are depicted in supplemen-
tary Fig. S1B. The ratio between the number of presence points and the
number of background points was 537/10000 = 5.37 %.

2.6. Model evaluation

We computed the AreaUnder the Curve (AUC) of the receiver operating
characteristic plot to evaluate the performance of the model (Fielding and
Bell, 1997) which is a very common practice is species distribution model-
ing. However, it relies both on true and false absences which information is
lacking in presence-only studies like ours. In that case background data are
treated as absence data and this is problematic (Yackulic et al., 2013). The
AUC value reported herein is thus provided for comparative purpose only.
Computationwas realized using the R packageMIAmaxent (Vollering et al.,
2019) and we used the occurrence records removed from the raw dataset
during the environmental thinning phase hence not used for model calibra-
tion.

We additionally evaluated the performance of the model using the Con-
tinuous Boyce Index (CBI) specifically developedwith the aimof evaluating
presence-only models (Boyce et al., 2002; Hirzel et al., 2006). The method
operates as follows: the model is used to estimate climate suitability (CS)
across the geographical area under study. The range of CS values is divided
in N classes and P, the frequency of occurrences falling into each class, is
computed. We additionally compute E, the expected frequency of points
randomly falling into each class given the total number of points available
in the study. The shape of the plot of P/E against the CS classes provides
precious information on the performances of the model (Hirzel et al.,
2006). Good models exhibit monotonically increasing P/E with increasing
CS classes. The CBI is defined as the Spearman-rank correlation between P/
E and CS values. It varies from+1 for perfect prediction to 0 (randomness)
and−1 for counter-prediction. The CBI was computed using the R package
ecospat (Broennimann et al., 2020).

Beyond model evaluation, the shape of the P/E vs. CS plot provides in-
teresting hints at CS thresholds useful to reclassify CS maps into a limited
number of meaningful categories (Hirzel et al., 2006). CS values below
the threshold at which P/E < 1 are associated to fewer presences than ex-
pected by chance and the corresponding geographical areas are to be con-
sidered as unsuitable environments. On the contrary, CS values above
that threshold point towards suitable areas. In certain cases, other thresh-
olds can be identified and indicate extremely favorable environments
(Hirzel et al., 2006; see an example in Streito et al., 2021).

One should ideally use new or independent data i.e. not involved in
modelfitting to assessmodel performance (Barry and Elith, 2006) although
such data are not often available. Here we used the occurrence data that
were removed from the raw dataset during the environmental thinning
phase. The dataset was submitted to a spatial thinning procedure (threshold
of 50 km) to avoid possible sampling bias (Aiello-Lammens et al., 2015). A
set of 100 different thinned datasets were generated and used to compute
the P/E curve (Hirzel et al., 2006). We computed a statistical envelop for
the median of these values using the quantiles for p = 0.025 and p =
0.975. The median was used to compute the CBI.

2.7. Forecasting future distribution of H. vitripennis

We projected the model using the different datasets depicting possible
future climate conditions listed above using the R package MIAmaxent.
The CS derived from the models were reclassed using the thresholds ob-
tained with the CBI approach. We additionally computed presence-
absencemaps by solely using the threshold at which P/E< 1.We computed
the proportion of land corresponding to suitable climate conditions in
Europe (−12.5 dd < longitude < 46.5 dd and 31 dd < latitude < 72 dd)
and North America + Pacific (−170 dd < −longitude < −70 dd and 15
dd < latitude < 40 dd), all SSPs and all periods considered.
4

The inter-GCM variations lead to some variability in the SDM estimate
of CS. We assessed this variability in two manners:

First, we computed an ensemble forecast representing agreements be-
tween model predictions after transformation into binary data (i.e. pres-
ence and absence) using the threshold at which P/E < 1. This ensemble
forecast, referred to as committee averaging, depicts the likelihood of
being present given the data (Guisan et al., 2017; Marmion et al., 2009).
When expressed in relative terms (%) the committee averaging shows
agreement between predictions (values close to 0 % (absence) or 100 %
(presence)) and disagreement (uncertainty). The maximum uncertainty is
reached when the committee averaging is 50 %which means that half pro-
jections suggest presence and the other half absence of the species.

Second, we compared the CS estimated by projecting the model using
the different GCM for a given SSP at a given date using pair-wise compari-
sons bases on the I similarity index proposed by Warren et al. (2008). This
index is the sum of the pair-wise differences between two predictions and
thus quantifies similarity of the two distributions in a single value. Compu-
tations were done using the R package SDMTools (VanDerWal et al., 2014).

We additionally computed the consensus models summarizing the
model projection associated to each GCM for a given date and a given
SSP on the basis of the median (less sensitive to extreme values than the
mean). The results are shown in the supplementary material.
3. Results

3.1. Variable selection and model calibration

The 7 climate variables (bio4, bio5, bio6, bio10, bio11, bio13 and
bio16) referred to as EVs were transformed into 61 derived variables (re-
ferred to as DVs, function deriveVars in MIAmaxent). Off these DVs, 17
were selected using the forward procedure implemented in the function
selectDVforEV of MIAmaxent under the specified significance threshold
of 0.01. Two EVs (bio4 and bio16) were dropped during the selection pro-
cedure because associated to insignificant DVs and the remaining 5 initial
EVs were kept in the form of the 17 DVs. The trail of forward selection of
individual EVs is shown in supplementary Table S2. We retained the 3
EVs that were selected at round 3 and significantly explained 10.7 % of
the null deviance. Adding supplementary EVs only slightly increased the ex-
planatory power of the model (up to 11.6 % of null deviance for 5 EVs)
(supplementary Fig. S3) while increasingmodel complexity and potentially
jeopardizing model transferability. The retained EVs were bio5 (maximum
temperature of warmest month), bio10 (mean temperature of warmest
quarter) and bio11 (mean temperature of coldest quarter). The associated
DVs are given in supplementary Table S3. The fraction of total variation ac-
counted for the variables bio11, bio10 and bio5 was 64.5, 19.6 and 15.9 %
respectively. The response curves are given in supplementary Fig. S4.
3.2. Model performance

The AUC and the Boyce indices were respectively 0.877 and 0.984, and
indicated very good performances. The plot of P/E against the classes of cli-
mate suitability is shown in supplementary Fig. S5. The shape of the curve
allowed to identify 2 thresholds. The first threshold (th1 = 0.211)
corresponded to the CS values for which the predicted/expected ratio con-
fidence interval is lower than 1 i.e. the model is predicting less presences
than expected by chance. An additional threshold was placed at the step
of the curve for CS value of 0.4906 from which the predicted/expected
ratio highly increased. The threshold allowed to distinguish between un-
suitable (<th1), suitable (>th1 and <th2) and optimal (>th2) climate suit-
ability values. The climate suitability maps were reclassified using these
thresholds leading to the maps shown in Figs. 1 and 2. Not surprisingly,
large parts of North America appeared to be climatically suitable to
H. vitripennis. Suitable areas occurred around the Mediterranean region in
Europe and North Africa.



Fig. 1. Current climate suitability for the glassy-winged sharpshooter Homalodisca vitripennis in North America. A Climate suitability quantified by the logistic output of a
Maxent model. B Climate suitability reclassified into unsuitable, suitable and optimal classes (see text for details). Projection: EPSG 4326.
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3.3. Forecasting future climate suitability

Temporal changes in the proportion of emerged land associated to suit-
able and optimal conditions (referred as suitable for simplification) are
shown in Fig. 3 for three GCM (see supplementary Figs. S6 and S7 for all
available GCM and worldwide estimates). The climate suitability of lands
in North America tended to decrease from 2021–2040 to 2080–2100. A
contrasted situation is observed in Europewhere surfaces associated to suit-
able climate increased or remained stable. When present, trends were gen-
erally more clearly marked for ssp585 and ssp370. Worldwide estimates
(supplementary Fig. S7) showed a global decrease of suitability irrespective
of the GCM and SSP considered.

Figs. 4 and 5 (see also supplementary Figs. S8 to S15) show the ensem-
ble forecast referred to as committee averaging. Comparing current distri-
bution and the period covering 2021–2040 for ssp245 shows a
fragmentation of suitable areas in Mexico and a shift from favorable condi-
tions to unfavorable conditions in California. In several states in the USA,
the climatic conditions are globally less favorable and an increase in
5

uncertainty is observed, i.e. certain projections indicate the presence of
the species while others indicate the opposite. This is, for example, what
is observed in Texas, Louisiana and Arkansas (Figs. 1, 4). If we examine
the projections for the period 2081–2100 (ssp245), the favorable zones
shift towards the northeast and Texas becomes completely unfavorable
while the proportion of projections indicating a favorable climate decreases
sharply for states like Texas, Louisiana and Arkansas. On the contrary, Ten-
nessee, Kentucky and Virginia offer favorable conditions for H. vitripennis.
On the west coast, climate suitability increases in Oregon.

In Europe (Fig. 5), a shift in favorable areas towards the north by the
2021–2040 period is observed. In some regions of Spain (Ciuad real,
Jaèn, Albacete) the conditions are evolving towards a decrease in suitabil-
ity. In North Africa, this trend takes the form of a reduction in the southern
fringe of currently suitable areas (Fig. 5). The projections according to the
different GCMs are consistent except for central France where the uncer-
tainty is higher. This trend continues in the period 2081–2100 (ssp245):
France and northern Spain (Coruña, Lugo, Asturias, Cantabria, Alaya) will
become favorable while and unfavorable areas of the center of the Iberian

Image of Fig. 1


J.-P. Rossi, J.-Y. Rasplus Science of the Total Environment 860 (2023) 160375

6

Image of Fig. 2


Fig. 3. Changes in the proportion of emerged lands associated to suitable conditions (the sum of suitable or optimal classes shown in Figs. 1 and 2). The surfaces associated to
suitable climate are decreasing in North America while they increase or remain stable in Europe.
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Peninsula will increase. The reduction of favorable areas in North Africa
continues. The projections corresponding to different SSP and time periods
show that the trend described below is stronger for increasing SSP and time
periods (supplementary Figs. S8 to S15).

3.4. Variability of climate suitability according to GCM

As indicated by the ensemble models described above, some discrepan-
cies between CS estimated using the model and various GCM/SSP could be
Fig. 2. Current climate suitability for the glassy-winged sharpshooter Homalodisca vitrip
model. B Climate suitability reclassified into unsuitable, suitable and optimal classes (se
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important in a few areas such as the Mississippi state during 2081–2080 or
the center of France in 2021–40 for ssp245. Fig. 6 depicts the similarity be-
tween the CS estimated according to the different GCMat all periods and all
SSP considered for Europe. The corresponding plot for North-America is
shown in supplementary Fig. S16. Both plots showed similar trends. The
variability between CS based on the different GCM tends to increase
through time (larger in the future), with increasing SSP. This conveys the
divergence between future climate projections expressed through GCM. In-
terestingly, larger dissimilarity (lower similarity) does not imply the same
ennis in Europe. A Climate suitability quantified by the logistic output of a Maxent
e text for details). Projection: EPSG 4326.

Image of Fig. 3


Fig. 4.Committee averaging depicting the proportion of future climate projections indicating suitable conditions in the periods 2021–2040 (A) and 2081–2100 (B) for ssp245
in North America. Mapped values range from 0% (all projections indicate unsuitable climate conditions) to 100 % (all projections indicate suitable climate conditions). Pro-
jection: EPSG 4326.
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couple of GCM across time or SSP. The most different pairs of GCM that are
most often found are CanESM5 - BCC.CSM2.MR and CanESM5 - CNRM.
CM6.1.

3.5. Worldwide maps

Worldwide maps are available in supplementary material S17 to S35
(consensus maps based on the median) and S36 to S51 (maps of the com-
mittee averaging). The raster source files (geotiff format) are available
from Recherche Data Gouv at doi:10.57745/ABP160
Fig. 5.Committee averaging depicting the proportion of future climate projections indica
in Europe. Mapped values range from 0 % (all projections indicate unsuitable climate co
EPSG 4326.
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4. Discussion

Homalodisca vitripennis is one of the greatest threats for countries where
climate conditions allow the species to complete its natural-life cycle and
where X. fastidiosa is present (Rathé et al., 2012). Hoddle (2004) used the
CLIMEX model to show that in addition to its North-American range, cli-
matically suitable areas for H. vitripennis comprised numerous grape pro-
duction areas worldwide as well as large tropical and semi-tropical
regions in Africa, America, Asia and Australia. Our results, based on up-
to-date occurrence datasets and a different modeling approach led to
ting suitable conditions in the periods 2021–2040 (A) and 2081–2100 (B) for ssp245
nditions) to 100 % (all projections indicate suitable climate conditions). Projection:

http://BCC.CSM2.MR
http://dx.doi.org/10.57745/ABP160
Image of Fig. 4
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Image of Fig. 5


Fig. 6. Changes in the similarity between model projections according to six GCM and four shared socio-economic pathways in Europe. The output of 6 GCM form a set of
(6*6-6)/3 = 15 pairs of GCM. Pairs of GCM are compared using the I similarity index Warren et al. (2008). Letters indicates the couples of GCM exhibiting the lower sim-
ilarity: a) BCC.CSM2.MR vs. CanESM5 b) BCC.CSM2.MR vs. CanESM5 c) CanESM5 vs. CNRM.CM6.1 d) BCC.CSM2.MR vs. CanESM5 e) CanESM5 vs. CNRM.CM6.1 f.
CanESM5 vs. CNRM.CM6.1 g) CanESM5 vs. CNRM.CM6.1 h) CanESM5 vs. MIROC6 i) CanESM5 vs. CNRM.CM6.1 j) CanESM5 vs. CNRM.CM6.1 k) CanESM5 vs. CNRM.
CM6.1 l) CanESM5 vs. MIROC6 m) CanESM5 vs. CNRM.CM6.1 n) CanESM5 vs. CNRM.CM6.1 o) CanESM5 vs. CNRM.CM6.1 p) BCC.CSM2.MR vs. CanESM5.
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similar yet not identical conclusions. Our model excludes tropical regions
from suitable areas. This contrast could be related to available occurrences
or climate data but an important difference between the studies lies with
the algorithm employed to model the insect distribution. CLIMEX and
Maxent are different approaches that may lead to partly divergent results
(Early et al., 2021). As in the case of the present study, Jung et al. (2017)
developed a CLIMEX model for the spotted lanternfly Lycorma delicatula
predicting large favorable areas including tropical regions while for the
same species butwithmaxent,Wakie et al. (2020) obtained amodel exclud-
ing tropical regions from suitable areas. However, the results of this study
are in agreement with those of Hoddle (2004) about Europe that appears
to offer suitable conditions throughout areas bordering the Mediterranean
Sea, but not in territories further north due to colder conditions (variable
bio11).

Climate change may affect the biosecurity of Europe by facilitating the
establishment of pest that nowadays occur in warmer climates. Therefore,
predicting areas at risk for some quarantine vectors of X. fastidiosa is a
step towards the development of a more efficient biosecurity network.
Modeling the potential geographical range of agricultural pests faces the
problem that available climate datasets (e.g. the worldclim database in
the present study) provide large-scale precipitation and temperature data
that cannot account for localized spatial features. In the case of
H. vitripennis, as for other species of vectors such as Philaenus spumarius
(Godefroid et al., 2021), this translates into the difficulty of incorporating
the effects of irrigation or localized heat islands. Irrigation modifies local
conditions and allows species such as H. vitripennis to survive in dry and
hot areas such as the Californian desert (Hoddle, 2004). As a consequence,
the range of the species might be underestimated. Our model indicates that
regions bordering the Mediterranean Sea are climatically suitable for
H. vitripennis. Since its first detection in Europe in 2013 (Italy) (Saponari
et al., 2013), different sub-species of X. fastidiosa have been identified
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from various European countries and it has been shown that parts of south-
ern Europe exhibit suitable climate conditions for the bacterium (Godefroid
et al., 2022, 2019). Therefore, an introduction of H. vitripennis in Europe
may pose a significant plant health problem, mostly around the Mediterra-
nean basin since these areas have suitable climate conditions for both the
disease and this highly efficient vector.

However, climate suitability is only one of the factors at play in the risk
of invasion by H. vitripennis which also depends on the pathways of entry,
the way propagules are transported (e.g. ornamental plants), the number
of individuals and their survival during the travel (Petit et al., 2008;
Rathé et al., 2015). H. vitripennis may be introduced either as egg masses
laid on plants or immature and adults (motiles) (Rathé et al., 2012;
Sorensen and Gill, 1996). Air transport is likely to be the way it has been in-
troduced from French Polynesia to Easter Island and the Cook Islands.
Rathé et al. (2015) showed that motiles could survive to the conditions of
humidity and temperature prevailing in cargo holds of aircraft during
24 h therefore illustrating how much air transport could be suitable to the
species. The recent detection of Draeculocephala robinsoni another
American insect vector of X. fastidiosa, in France and Spain (Rösch et al.,
2022) points out howmuch long-distance introduction of such Cicadellidae
species is plausible. Since H. vitripennis is a polyphagous species, the avail-
ability of trophic resources is not likely to be a limiting factor of its estab-
lishment in case of introduction in the Mediterranean basin. We therefore
conclude that the risk is high thatH. vitripenniswould establish if it were in-
troduced and that introduction is a genuine possibility albeit difficult to es-
timate. It should be noted that once introduced, organisms can evolve in
situ and adapt locally to new environmental conditions (Pearman et al.,
2008) that cannot be accounted for by SDM calibrated using source popula-
tions data. This limitation should be remembered since it is well-recognized
that contemporary evolution does strongly shape phenotypic changes ac-
companying invasion events (Lee, 2002; Westley, 2011). Furthermore,

Image of Fig. 6
http://BCC.CSM2.MR
http://BCC.CSM2.MR
http://BCC.CSM2.MR
http://BCC.CSM2.MR
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climate change might also impact the prevalence of the disease inside the
vector. Such a phenomenon has recently been discussed in the case of
X. fastidiosa and its vector Philaenus spumarius in France (Farigoule et al.,
2022) but very little is known for other species.

Preparedness benefits from the knowledge of regions at risk but it is also
useful to assess how these exposed areas would change in the coming de-
cades under the effect of climate change. Our results highlight the uncer-
tainty of the SDM outputs with regards to both GCM and SSP (see below)
but some general trends emerge. The climate suitability is expected to in-
crease in Europe and decrease in North America in the between 2030 and
2090. The trend is more acute for increasing shared socioeconomic path-
ways i.e. ssp126 < ssp245 < ssp370 < ssp585 which observation conveys
the impact of the magnitude of climate change in our species distribution
model. The changes we found are important and could lead to a dramatic
range shift in North-America. In Europe, the pattern is a decrease of climate
suitability in the areas currently suitable (i.e. around the Mediterranean
basin, south Spain, North Africa) with northern region becoming suitable.
Climate changewill relax cold stress in northern regionswhile high temper-
atures (variable bio5 and bio10) may cause heat stress in the south. While
the areas currently at risk will remain largely exposed, the surveillance
will have to be implemented inmore countries and larger regions. As a con-
sequence, the number of climatically suitable hubs for H. vitripennis intro-
duction will probably increase hence the economic cost of surveillance.
Anticipating the change in distribution area is a way to guide surveillance
and improve introduction prevention. This type of information could be
shared between phytosanitary authorities for an improved international co-
ordination of early-warning systems (Carvajal-Yepes et al., 2019; Giovani
et al., 2020; Reaser et al., 2020). With changing climate suitability, new
areas at risk could be identified and phytosanitary services could optimize
the surveillance networks accordingly. Such information could also im-
prove the future pest risk analyses and help authorities when making poli-
cies about trapping for early detection.

In the present study, we used theMaxent algorithm in associationwith a
forward stepwise selection procedure allowing to select a subset of trans-
formed explanatory variables. This approach is appealing because it yields
models that are simpler than those produced by the standard procedure im-
plemented in Maxent (Vollering et al., 2019). As a consequence the risk of
overfitting is lower and the model transferability is better which is impor-
tant in the context of forecasting future potential distributions (Jiménez-
Valverde et al., 2011; Mazzoni et al., 2015). Regardless of the model intrin-
sic features, the uncertainties regarding the evolution of the climate in the
future limit our capacity to forecast species range (Beaumont et al., 2008;
Koo et al., 2017). Here, we report increasing variability between the cli-
mate suitability stemming from our model through time. Such a trend
was reported by e.g. Buisson et al. (2010) and conveys the increasing dis-
crepancies between GCM with time. Interestingly, we also report higher
variability in SDM predictions with increasing SSP. Again, this conveys
the increasing dissimilarity between GCM according to SSP corresponding
to increasing emissions (Fig. 6). Another source of variability is that the
most dissimilar predictions are associated with different GCM according
to the time period and SSP considered. The main consequence of these sub-
stantial sources of variability is not new and implies that environmental sci-
entists should usemultiple GCMwhen their objective is to assess the impact
of future climate upon species potential distribution (Beaumont et al., 2008;
Hannah, 2015). In the present study we used all the GCM projections avail-
able from the worldclim database for the four SSPs and the different time
periods under investigation (Fick and Hijmans, 2017). However, this strat-
egy may not always be optimal because GCMprojections might not be fully
independent in the statistical sense (Sanderson et al., 2015). The problem of
GCM interdependency has been recently discussed by Shiogama et al.
(2021) who proposed a method allowing to select a subset of GCM repre-
sentative of the uncertainty range of available models. Such approach is
promising and should be tested for GCM selection prior to SDM projection.
Daron et al. (2021) highlighted the importance of providing a picture of the
range of uncertainty and avoiding to solely focus on themean or themedian
of estimates when communicating about climate change manifestations. A
11
similar principle could be applied to species potential distribution and
phytosanitary risk.

CRediT authorship contribution statement

Jean-Pierre Rossi: Conceptualization, Methodology, Software, Formal
analysis, Visualization, Writing – original draft. Jean-Yves Rasplus: Con-
ceptualization, Data curation, Writing – original draft.

Data availability

Part of the dataset is provided in the supplementary material; the rest
comes from GBIF and can be downloaded by readers. A DOI is provided
in the references section.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

We are greatly indebted to three anonymous reviewers for their com-
ments that greatly improved the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.160375.

References

Abram, N., Gattuso, J.-P., Prakash, A., Cheng, L., Chidichimo, M.P., Crate, S., Enomoto, H.,
Garschagen, M., Gruber, N., Harper, S., Holland, E., Kudela, R.M., Rice, J., Steffen, K.,
von Schuckmann, K., 2019. Framing and context of the report. In: Pörtner, H.-O.,
Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck,
K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M. (Eds.), IPCC Spe-
cial Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University
Press, Cambridge, UK and New York, NY, USA, pp. 73–129 https://doi.org/10.1017/
9781009157964.003.

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., Anderson, R.P., 2015. spThin:
an R package for spatial thinning of species occurrence records for use in ecological niche
models. Ecography 38, 541–545. https://doi.org/10.1111/ecog.01132.

Anil, S., Manikanta, V., Pallakury, A.R., 2021. Unravelling the influence of subjectivity on
ranking of CMIP6 based climate models: a case study. Int. J. Climatol. 41, 5998–6016.
https://doi.org/10.1002/joc.7164.

Bagchi, R., Crosby, M., Huntley, B., Hole, D.G., Butchart, S.H.M., Collingham, Y., Kalra, M.,
Rajkumar, J., Rahmani, A., Pandey, M., Gurung, H., Trai, L.T., Quang, N.V., Willis, S.G.,
2013. Evaluating the effectiveness of conservation site networks under climate change:
accounting for uncertainty. Glob Change Biol. 19, 1236–1248. https://doi.org/10.
1111/gcb.12123.

Baquero, R.A., Barbosa, A.M., Ayllón, D., Guerra, C., Sánchez, E., Araújo, M.B., Nicola, G.G.,
2021. Potential distributions of invasive vertebrates in the Iberian Peninsula under
projected changes in climate extreme events. Divers. Distrib. 27, 2262–2276. https://
doi.org/10.1111/ddi.13401.

Barry, S., Elith, J., 2006. Error and uncertainty in habitat models. J. Appl. Ecol. 43, 413–423.
https://doi.org/10.1111/j.1365-2664.2006.01136.x.

Beaumont, L.J., Hughes, L., Pitman, A.J., 2008. Why is the choice of future climate scenarios
for species distribution modelling important?: projecting species distributions under fu-
ture climates. Ecol. Lett. 11, 1135–1146. https://doi.org/10.1111/j.1461-0248.2008.
01231.x.

Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., 2013. Will climate change promote future in-
vasions? Glob. Chang. Biol. 19, 3740–3748. https://doi.org/10.1111/gcb.12344.

Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F.K.A., 2002. Evaluating resource se-
lection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)
00200-4.

Bradley, B.A., Blumenthal, D.M., Wilcove, D.S., Ziska, L.H., 2010. Predicting plant invasions in
an era of global change. Trends Ecol. Evol. 25, 310–318. https://doi.org/10.1016/j.tree.
2009.12.003.

Bradshaw, C.J.A., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier, A., Barbet-Massin, M.,
Salles, J.-M., Simard, F., Courchamp, F., 2016. Massive yet grossly underestimated global
costs of invasive insects. Nat. Commun. 7, 12986. https://doi.org/10.1038/
ncomms12986.

https://doi.org/10.1016/j.scitotenv.2022.160375
https://doi.org/10.1016/j.scitotenv.2022.160375
https://doi.org/10.1017/9781009157964.003
https://doi.org/10.1017/9781009157964.003
https://doi.org/10.1111/ecog.01132
https://doi.org/10.1002/joc.7164
https://doi.org/10.1111/gcb.12123
https://doi.org/10.1111/gcb.12123
https://doi.org/10.1111/ddi.13401
https://doi.org/10.1111/ddi.13401
https://doi.org/10.1111/j.1365-2664.2006.01136.x
https://doi.org/10.1111/j.1461-0248.2008.01231.x
https://doi.org/10.1111/j.1461-0248.2008.01231.x
https://doi.org/10.1111/gcb.12344
https://doi.org/10.1016/S0304-3800(02)00200-4
https://doi.org/10.1016/S0304-3800(02)00200-4
https://doi.org/10.1016/j.tree.2009.12.003
https://doi.org/10.1016/j.tree.2009.12.003
https://doi.org/10.1038/ncomms12986
https://doi.org/10.1038/ncomms12986


J.-P. Rossi, J.-Y. Rasplus Science of the Total Environment 860 (2023) 160375
Broennimann, O., Cola, V.D., Guisan, A., 2020. Ecospat: spatial ecology miscellaneous
methods. R package version 3.2 https://CRAN.R-project.org/package=ecospat.

Buisson, L., Thuiller, W., Casajus, N., Lek, S., Grenouillet, G., 2010. Uncertainty in ensemble
forecasting of species distribution. Glob. Chang. Biol. 16, 1145–1157. https://doi.org/
10.1111/j.1365-2486.2009.02000.x.

Carvajal-Yepes, M., Cardwell, K., Nelson, A., Garrett, K.A., Giovani, B., Saunders, D.G.O.,
Kamoun, S., Legg, J.P., Verdier, V., Lessel, J., Neher, R.A., Day, R., Pardey, P., Gullino,
M.L., Records, A.R., Bextine, B., Leach, J.E., Staiger, S., Tohme, J., 2019. A global surveil-
lance system for crop diseases. Science 364, 1237–1239. https://doi.org/10.1126/sci-
ence.aaw1572.

Cavalieri, V., Altamura, G., Fumarola, G., di Carolo, M., Saponari, M., Cornara, D., Bosco, D.,
Dongiovanni, C., 2019. Transmission of Xylella fastidiosa subspecies Pauca sequence type
53 by different insect species. Insects 10, 324. https://doi.org/10.3390/in-
sects10100324.

Chaloner, T.M., Gurr, S.J., Bebber, D.P., 2021. Plant pathogen infection risk tracks global crop
yields under climate change. Nat. Clim. Chang. 11, 710–715. https://doi.org/10.1038/
s41558-021-01104-8.

Cornara, D., Sicard, A., Zeilinger, A.R., Porcelli, F., Purcell, A.H., Almeida, R.P.P., 2016. Trans-
mission of Xylella fastidiosa to grapevine by the meadow spittlebug. Phytopathology 106,
1285–1290. https://doi.org/10.1094/PHYTO-05-16-0202-R.

Daron, J., Lorenz, S., Taylor, A., Dessai, S., 2021. Communicating future climate projections of
precipitation change. Clim. Chang. 166, 23. https://doi.org/10.1007/s10584-021-
03118-9.

Diagne, C., Leroy, B., Vaissière, A.-C., Gozlan, R.E., Roiz, D., Jarić, I., Salles, J.-M., Bradshaw,
C.J.A., Courchamp, F., 2021. High and rising economic costs of biological invasions
worldwide. Nature 592, 571–576. https://doi.org/10.1038/s41586-021-03405-6.

Diamond, S.E., 2018. Contemporary climate-driven range shifts: putting evolution back on the
table. Funct. Ecol. 32, 1652–1665. https://doi.org/10.1111/1365-2435.13095.

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Garcia Marquez, J.R.,
Gruber, B., Lafourcade, B., Leitao, P.J., Muenkemueller, T., McClean, C., Osborne, P.E.,
Reineking, B., Schroeder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinear-
ity: a review of methods to deal with it and a simulation study evaluating their perfor-
mance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.

Early, R., Rwomushana, I., Chipabika, G., Day, R., 2021. Comparing, evaluating, and combin-
ing statistical species distribution models and CLIMEX to forecast the distributions of
emerging crop pests. Pest Manag. Sci. 78, 671–683. https://doi.org/10.1002/ps.6677.

EFSA PLH Panel (EFSA Panel on Plant Health), Jeger, M., Caffier, D., Candresse, T.,
Chatzivassiliou, E., Dehnen-Schmutz, K., Gilioli, G., Grégoire, J.-C., Jaques Miret, J.A., Mac-
Leod, A., Navajas Navarro, M., Niere, B., Parnell, S., Potting, R., Rafoss, T., Rossi, V., Urek,
G., Van Bruggen, A., Van der Werf, W., West, J., Winter, S., Almeida, R., Bosco, D., Jacques,
M.-A., Landa, B., Purcell, A., Saponari, M., Czwienczek, E., Delbianco, A., Stancanelli, G.,
Bragard, C., 2018. Scientific opinion on the updated pest categorisation of Xylella fastidiosa.
EFSA J. 16, 5357. https://doi.org/10.2903/j.efsa.2018.5357.

Elith, J., Graham, C.H., Anderson, R.P., DudÌk, M., Ferrier, S., Guisan, A., Hijmans, R.J.,
Huettmann, F., Leathwick, J.R., Lehmann, A., et al., 2006. Novel methods improve pre-
diction of species’ distributions from occurrence data. Ecography 29, 129–151.

Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species: the art of
modelling range-shifting species. Methods Ecol. Evol. 1, 330–342. https://doi.org/10.
1111/j.2041-210X.2010.00036.x.

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016.
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
design and organization. Geosci. Model Dev. 9, 1937–1958. https://doi.org/10.5194/
gmd-9-1937-2016.

Farigoule, P., Chartois, M., Mesmin, X., Lambert, M., Rossi, J.-P., Rasplus, J.-Y., Cruaud, A.,
2022. Vectors as sentinels: rising temperatures increase the risk of Xylella fastidiosa out-
breaks. Biology 11, 1299. https://doi.org/10.3390/biology11091299.

Feng, X., Park, D.S., Liang, Y., Pandey, R., Papeş, M., 2019. Collinearity in ecological niche
modeling: confusions and challenges. Ecol. Evol. 9, 10365–10376. https://doi.org/10.
1002/ece3.5555.

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for
global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086.

Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environ. Conserv. 24, 38–49.

Fournier, A., Penone, C., Pennino, M.G., Courchamp, F., 2019. Predicting future invaders and
future invasions. Proc. Natl. Acad. Sci. U. S. A. 116, 7905–7910. https://doi.org/10.
1073/pnas.1803456116.

GBIF.org, 2021. Occurrence Download DOI: 10.15468/DL.CVAGFS. https://doi.org/10.
15468/DL.CVAGFS.

Giovani, B., Blümel, S., Lopian, R., Teulon, D., Bloem, S., Galeano Martínez, C., Beltrán
Montoya, C., Urias Morales, C.R., Dharmapuri, S., Timote, V., Horn, N., Chouibani, M.,
Mezui M’Ella, J.G., Herrera, V., Castinel, A., Goletsos, C., Moeller, C., Naumann, I.,
Stancanelli, G., Bronzwaer, S., Tramontini, S., MacDonald, P., Matheson, L., Anthoine,
G., De Jonghe, K., Schenk, M., Steinmöller, S., Rodriguez, E., Cruz, M.L., Luck, J.,
Fraser, G., Brunel, S., Montuori, M., Fedchock, C., Steel, E., Pennington, H.G., Day, R.,
Rossi, J.-P., Xia, J., 2020. Science diplomacy for plant health. Nat. Plants 6, 902–905.
https://doi.org/10.1038/s41477-020-0744-x.

Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y., Rossi, J.-P., 2019. Xylella fastidiosa: cli-
mate suitability of European continent. Sci. Rep. 9, 8844. https://doi.org/10.1038/
s41598-019-45365-y.

Godefroid, M., Meurisse, N., Groenen, F., Kerdelhué, C., Rossi, J.-P., 2020. Current and future
distribution of the invasive oak processionarymoth. Biol. Invasions 22, 523–534. https://
doi.org/10.1007/s10530-019-02108-4.

Godefroid, M., Morente, M., Schartel, T., Cornara, D., Purcell, A., Gallego, D., Moreno, A.,
Pereira, J.A., Fereres, A., 2021. Climate tolerances of Philaenus spumarius should be con-
sidered in risk assessment of disease outbreaks related to Xylella fastidiosa. J. Pest. Sci. 95,
855–868. https://doi.org/10.1007/s10340-021-01413-z.
12
Godefroid, M., Cruaud, A., Streito, J.-C., Rasplus, J.-Y., Rossi, J.-P., 2022. Forecasting future
range shifts of Xylella fastidiosa under climate change. Plant Pathol. 00, 1–10 Available
from: https://doi.org/10.1111/ppa.13637.

Grandgirard, J., Hoddle, M.S., Roderick, G.K., Petit, J.N., Percy, D., Putoa, R., Garnier, C.,
Davies, N., 2006. Invasion of French Polynesia by the glassy-winged sharpshooter,
Homalodisca coagulata (Hemiptera: Cicadellidae): a new threat to the South Pacific. Pac.
Sci. 60, 429–438. https://doi.org/10.1353/psc.2006.0028.

Guevara, L., Gerstner, B.E., Kass, J.M., Anderson, R.P., 2018. Toward ecologically realistic pre-
dictions of species distributions: a cross-time example from tropical montane cloud for-
ests. Glob. Chang. Biol. 24, 1511–1522. https://doi.org/10.1111/gcb.13992.

Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat suitability and distribution models
with applications. R, Ecology, Biodiversity and Conservation. Cambridge University
Press, Cambridge, United Kingdom; New York, NY.

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M.A., Abe, M., Ohgaito, R., Ito,
Akinori, Yamazaki, D., Okajima, H., Ito, Akihiko, Takata, K., Ogochi, K., Watanabe, S.,
Kawamiya, M., 2020. Development of the MIROC-ES2L earth system model and the eval-
uation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244.
https://doi.org/10.5194/gmd-13-2197-2020.

Halvorsen, R., 2013. A strict maximum likelihood explanation of MaxEnt, and some implica-
tions for distribution modelling. Sommerfeltia 36, 1–132. https://doi.org/10.2478/
v10208-011-0016-2.

Halvorsen, R., Mazzoni, S., Bryn, A., Bakkestuen, V., 2015. Opportunities for improved distri-
bution modelling practice via a strict maximum likelihood interpretation of MaxEnt.
Ecography 38, 172–183. https://doi.org/10.1111/ecog.00565.

Hannah, L.J., 2015. Climate Change Biology, Second. Edition. ed. Academic Press, Elsevier,
Amsterdam.

Hearon, S.S., Sherald, J.L., Kostka, S.J., 1980. Association of xylem-limited bacteria with elm,
sycamore, and oak leaf scorch. Can. J. Bot. 58, 1986–1993. https://doi.org/10.1139/
b80-228.

Hijmans, R.J., Graham, C.H., 2006. The ability of climate envelope models to predict the ef-
fect of climate change on species distributions: comparing climate envelope and mecha-
nistic models. Glob. Chang. Biol. 12, 2272–2281. https://doi.org/10.1111/j.1365-2486.
2006.01256.x.

Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., 2021. dismo: species distribution modeling.
R package version 1.3-5 https://CRAN.R-project.org/package=dismo.

Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A., 2006. Evaluating the ability of hab-
itat suitability models to predict species presences. Ecol. Model. 199, 142–152. https://
doi.org/10.1016/j.ecolmodel.2006.05.017.

Hoddle, M.S., 2004. The potential adventive geographic range of glassy-winged sharpshooter,
Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for Califor-
nia and other grape growing regions of the world. Crop Prot. 23, 691–699. https://doi.
org/10.1016/j.cropro.2003.11.017.

Hummel, N.A., Zalom, F.G., Toscano, N.C., Burman, P., Peng, C.Y.S., 2006. Seasonal patterns
of female Homalodisca coagulata (Say) (Hemiptera: Cicadellidae) reproductive physiology
in Riverside, California. Environ. Entomol. 35, 901–906. https://doi.org/10.1603/0046-
225X-35.4.901.

Islam, W., Noman, A., Naveed, H., Alamri, S.A., Hashem, M., Huang, Z., Chen, H.Y.H., 2020.
Plant-insect vector-virus interactions under environmental change. Sci. Total Environ.
701, 135044. https://doi.org/10.1016/j.scitotenv.2019.135044.

Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P., Lobo, J.M., 2011.
Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797.
https://doi.org/10.1007/s10530-011-9963-4.

Jung, J.-M., Jung, S., Byeon, D., Lee, W.-H., 2017. Model-based prediction of potential distri-
bution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera:
Fulgoridae), by using CLIMEX. J. Asia Pac. Biodivers. 10, 532–538.

Kirtman, B., Power, S.B., Adedoyin, J.A., Boer, G.J., Bojariu, R., Camilloni, I., Doblas-Reyes,
F.J., Fiore, A.M., Kimoto, M., Meehl, G.A., Prather, M., Sarr, A., Schär, C., Sutton, R.,
van Oldenborgh, G.J., Vecchi, G., Wang, H.J., 2013. Near-term climate change: projec-
tions and predictability. Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change. Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA.

Koo, K.A., Park, S.U., Kong, W.-S., Hong, S., Jang, I., Seo, C., 2017. Potential climate
change effects on tree distributions in the Korean Peninsula: understanding model
& climate uncertainties. Ecol. Model. 353, 17–27. https://doi.org/10.1016/j.
ecolmodel.2016.10.007.

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V.,
Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross,
J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R.,
Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C.,
Belant, J.L., Hofer, H., Wilting, A., 2013. The importance of correcting for sampling
bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379. https://doi.
org/10.1111/ddi.12096.

Lawrence, D.J., Runyon, A.N., Gross, J.E., Schuurman, G.W., Miller, B.W., 2021. Divergent,
plausible, and relevant climate futures for near- and long-term resource planning. Clim.
Chang. 167, 38. https://doi.org/10.1007/s10584-021-03169-y.

Lee, C.E., 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391.
Legendre, P., Legendre, L., 2012. Numerical Eecology. Elsevier, Amsterdam.
Lessio, F., Alma, A., 2021. Models applied to grapevine pests: a review. Insects 12, 169.

https://doi.org/10.3390/insects12020169.
Maino, J.L., Schouten, R., Umina, P., 2021. Predicting the global invasion of Drosophila suzukii

to improve Australian biosecurity preparedness. J. Appl. Ecol. 58, 789–800. https://doi.
org/10.1111/1365-2664.13812.

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W., 2009. Evaluation of
consensus methods in predictive species distribution modelling. Divers. Distrib. 15,
59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x.

https://CRAN.R-project.org/package=ecospat
https://doi.org/10.1111/j.1365-2486.2009.02000.x
https://doi.org/10.1111/j.1365-2486.2009.02000.x
https://doi.org/10.1126/science.aaw1572
https://doi.org/10.1126/science.aaw1572
https://doi.org/10.3390/insects10100324
https://doi.org/10.3390/insects10100324
https://doi.org/10.1038/s41558-021-01104-8
https://doi.org/10.1038/s41558-021-01104-8
https://doi.org/10.1094/PHYTO-05-16-0202-R
https://doi.org/10.1007/s10584-021-03118-9
https://doi.org/10.1007/s10584-021-03118-9
https://doi.org/10.1038/s41586-021-03405-6
https://doi.org/10.1111/1365-2435.13095
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1002/ps.6677
https://doi.org/10.2903/j.efsa.2018.5357
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0120
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0120
https://doi.org/10.1111/j.2041-210X.2010.00036.x
https://doi.org/10.1111/j.2041-210X.2010.00036.x
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.3390/biology11091299
https://doi.org/10.1002/ece3.5555
https://doi.org/10.1002/ece3.5555
https://doi.org/10.1002/joc.5086
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0150
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0150
https://doi.org/10.1073/pnas.1803456116
https://doi.org/10.1073/pnas.1803456116
https://doi.org/10.15468/DL.CVAGFS
https://doi.org/10.15468/DL.CVAGFS
https://doi.org/10.1038/s41477-020-0744-x
https://doi.org/10.1038/s41598-019-45365-y
https://doi.org/10.1038/s41598-019-45365-y
https://doi.org/10.1007/s10530-019-02108-4
https://doi.org/10.1007/s10530-019-02108-4
https://doi.org/10.1007/s10340-021-01413-z
https://doi.org/10.1111/ppa.13637
https://doi.org/10.1353/psc.2006.0028
https://doi.org/10.1111/gcb.13992
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0200
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0200
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0200
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.2478/v10208-011-0016-2
https://doi.org/10.2478/v10208-011-0016-2
https://doi.org/10.1111/ecog.00565
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0220
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0220
https://doi.org/10.1139/b80-228
https://doi.org/10.1139/b80-228
https://doi.org/10.1111/j.1365-2486.2006.01256.x
https://doi.org/10.1111/j.1365-2486.2006.01256.x
https://CRAN.R-project.org/package=dismo
https://doi.org/10.1016/j.ecolmodel.2006.05.017
https://doi.org/10.1016/j.ecolmodel.2006.05.017
https://doi.org/10.1016/j.cropro.2003.11.017
https://doi.org/10.1016/j.cropro.2003.11.017
https://doi.org/10.1603/0046-225X-35.4.901
https://doi.org/10.1603/0046-225X-35.4.901
https://doi.org/10.1016/j.scitotenv.2019.135044
https://doi.org/10.1007/s10530-011-9963-4
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0265
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0265
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0265
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0270
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0270
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0270
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0270
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0270
https://doi.org/10.1016/j.ecolmodel.2016.10.007
https://doi.org/10.1016/j.ecolmodel.2016.10.007
https://doi.org/10.1111/ddi.12096
https://doi.org/10.1111/ddi.12096
https://doi.org/10.1007/s10584-021-03169-y
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0290
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0295
https://doi.org/10.3390/insects12020169
https://doi.org/10.1111/1365-2664.13812
https://doi.org/10.1111/1365-2664.13812
https://doi.org/10.1111/j.1472-4642.2008.00491.x


J.-P. Rossi, J.-Y. Rasplus Science of the Total Environment 860 (2023) 160375
Mazzoni, S., Halvorsen, R., Bakkestuen, V., 2015. MIAT: modular R-wrappers for flexible im-
plementation of MaxEnt distribution modelling. Ecol. Inform. 30, 215–221.

McMahon, D.E., Urza, A.K., Brown, J.L., Phelan, C., Chambers, J.C., 2021. Modelling species
distributions and environmental suitability highlights risk of plant invasions in western
United States. Divers. Distrib. 27, 710–728. https://doi.org/10.1111/ddi.13232.

Meinshausen, M., Nicholls, Z.R.J., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., Beyerle, U.,
Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B.,
Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S., Smith, S.J., van
den Berg, M., Velders, G.J.M., Vollmer, M.K., Wang, R.H.J., 2020. The shared socio-
economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500.
Geosci. Model Dev. 13, 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020.

Milanesi, P., Della Rocca, F., Robinson, R.A., 2020. Integrating dynamic environmental pre-
dictors and species occurrences: toward true dynamic species distribution models. Ecol.
Evol. 10, 1087–1092. https://doi.org/10.1002/ece3.5938.

Pearman, P.B., Guisan, A., Broennimann, O., Randin, C.F., 2008. Niche dynamics in space and
time. Trends Ecol. Evol. 23, 149–158. https://doi.org/10.1016/j.tree.2007.11.005.

Petit, J.N., Hoddle, M.S., Grandgirard, J., Roderick, G.K., Davies, N., 2008. Invasion dynamics
of the glassy-winged sharpshooter Homalodisca vitripennis (Germar) (Hemiptera:
Cicadellidae) in French Polynesia. Biol. Invasions 10, 955–967. https://doi.org/10.
1007/s10530-007-9172-3.

Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C., Guisan, A., 2017. Selecting predic-
tors to maximize the transferability of species distribution models: lessons from cross-
continental plant invasions: which predictors increase the transferability of SDMs? Global
Ecol. Biogeogr. 26, 275–287. https://doi.org/10.1111/geb.12530.

Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions
and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.
0906-7590.2008.5203.x.

Pyšek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton, J.T., Dawson, W.,
Essl, F., Foxcroft, L.C., Genovesi, P., Jeschke, J.M., Kühn, I., Liebhold, A.M., Mandrak,
N.E., Meyerson, L.A., Pauchard, A., Pergl, J., Roy, H.E., Seebens, H., Kleunen, M., Vilà,
M., Wingfield, M.J., Richardson, D.M., 2020. Scientists’ warning on invasive alien spe-
cies. Biol. Rev. 95, 1511–1534. https://doi.org/10.1111/brv.12627.

R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. Vienna, Austria URL https://www.R-project.
org/.

Rathé, A.A., Pilkington, L.J., Gurr, G.M., Hoddle, M.S., Daugherty, M.P., Constable, F.E., Luck,
J.E., Powell, K.S., Fletcher, M.J., Edwards, O.R., 2012. Incursion preparedness: anticipat-
ing the arrival of an economically important plant pathogen Xylella fastidiosa Wells
(Proteobacteria: Xanthomonadaceae) and the insect vector Homalodisca vitripennis
(Germar) (Hemiptera: Cicadellidae) in Australia: plant pathogen and vector. Aust.
J. Entomol. 51, 209–220. https://doi.org/10.1111/j.1440-6055.2011.00856.x.

Rathé, A.A., Pilkington, L.J., Spohr, L.J., Hoddle, M.S., Daugherty, M.P., Gurr, G.M., 2015. In-
vasion pathway risk analysis for the glassy-winged sharpshooter (Homalodisca
vitripennis): survival and reproductive success following simulated air transportation.
Biol. Invasions 17, 2963–2973. https://doi.org/10.1007/s10530-015-0924-1.

Reaser, J.K., Burgiel, S.W., Kirkey, J., Brantley, K.A., Veatch, S.D., Burgos-Rodríguez, J., 2020.
The early detection of and rapid response (EDRR) to invasive species: a conceptual frame-
work and federal capacities assessment. Biol. Invasions 22, 1–19. https://doi.org/10.
1007/s10530-019-02156-w.

Redak, R.A., Purcell, A.H., Lopes, J.R.S., Blua, M.J., Mizell III, R.F., Andersen, P.C., 2004. The
biology of xylem fluid–feeding insect vectors of Xylella fastidiosa and their relation to dis-
ease epidemiology. Annu. Rev. Entomol. 49, 243–270. https://doi.org/10.1146/annurev.
ento.49.061802.123403.

Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N.,
Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., Kc, S., Leimbach,
M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P.,
Humpenöder, F., Da Silva, L.A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M.,
Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G.,
Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., 2017. The shared socioeco-
nomic pathways and their energy, land use, and greenhouse gas emissions implications:
an overview. Glob. Environ. Chang. 42, 153–168. https://doi.org/10.1016/j.gloenvcha.
2016.05.009.

Ricciardi, A., Palmer, M.E., Yan, N.D., 2011. Should biological invasions be managed as nat-
ural disasters? BioScience 61, 312–317. https://doi.org/10.1525/bio.2011.61.4.11.

Rösch, V., Marques, E., Miralles-Núñez, A., Zahniser, J.N., Wilson, M.R., 2022.
Draeculacephala robinsoni Hamilton, 1967 (Hemiptera: Auchenorrhyncha: Cicadellidae),
a newly introduced species and genus in Europe with comments on its identification.
Zootaxa 5116, 439–448. https://doi.org/10.11646/zootaxa.5116.3.8.

Sanderson, B.M., Knutti, R., Caldwell, P., 2015. A representative democracy to reduce interde-
pendency in a multimodel ensemble. J. Clim. 28, 5171–5194. https://doi.org/10.1175/
JCLI-D-14-00362.1.

Saponari, M., Boscia, D., Nigro, F., Martelli, G.P., et al., 2013. Identification of DNA sequences
related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch
symptoms in Apulia (Southern Italy). J. Plant Pathol. 95, 668.

Schneider, K., van der Werf, W., Cendoya, M., Mourits, M., Navas-Cortés, J.A., Vicent, A.,
Oude Lansink, A., 2020. Impact of Xylella fastidiosa subspecies pauca in European olives.
Proc. Natl. Acad. Sci. U. S. A. 117, 9250–9259. https://doi.org/10.1073/pnas.
1912206117.

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin, J., Decharme, B.,
Delire, C., Berthet, S., Chevallier, M., Sénési, S., Franchisteguy, L., Vial, J., Mallet, M.,
Joetzjer, E., Geoffroy, O., Guérémy, J., Moine, M., Msadek, R., Ribes, A., Rocher, M.,
13
Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R., Aumont,
O., Bopp, L., Deshayes, J., Éthé, C., Madec, G., 2019. Evaluation of CNRM earth system
model, CNRM-ESM2-1: role of earth system processes in present-day and future climate.
J. Adv. Model. Earth Syst. 11, 4182–4227. https://doi.org/10.1029/2019MS001791.

Shiogama, H., Ishizaki, N.N., Hanasaki, N., Takahashi, K., Emori, S., Ito, R., Nakaegawa, T.,
Takayabu, I., Hijioka, Y., Takayabu, Y.N., Shibuya, R., 2021. Selecting CMIP6-based fu-
ture climate scenarios for impact and adaptation studies. SOLA 17, 57–62. https://doi.
org/10.2151/sola.2021-009.

Sorensen, J., Gill, R., 1996. A range extension of Homalodisca coagulata (Say) (Hemiptera:
Clypeorrhyncha: Cicadellidae) to southern California. Pan-Pac. Entomol. 72, 160–161.

Streito, J.-C., Chartois, M., Pierre, É., Dusoulier, F., Armand, J.-M., Gaudin, J., Rossi, J.-P.,
2021. Citizen science and niche modeling to track and forecast the expansion of the
brown marmorated stinkbug Halyomorpha halys (Stål, 1855). Sci. Rep. 11, 11421.
https://doi.org/10.1038/s41598-021-90378-1.

Swart, N.C., Cole, J.N.S., Kharin, V.V., Lazare, M., Scinocca, J.F., Gillett, N.P., Anstey, J.,
Arora, V., Christian, J.R., Hanna, S., Jiao, Y., Lee, W.G., Majaess, F., Saenko, O.A.,
Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D.,
Winter, B., 2019. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci.
Model Dev. 12, 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019.

Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M.,
Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y.,
Mochizuki, T., Yoshimura, K., Takata, K., O’ishi, R., Yamazaki, D., Suzuki, T., Kurogi,
M., Kataoka, T., Watanabe, M., Kimoto, M., 2019. Description and basic evaluation of
simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci.
Model Dev. 12, 2727–2765. https://doi.org/10.5194/gmd-12-2727-2019.

Thuiller, W., Guéguen, M., Renaud, J., Karger, D.N., Zimmermann, N.E., 2019. Uncertainty in
ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446. https://doi.org/10.
1038/s41467-019-09519-w.

Tumber, K.P., Alston, J.M., Fuller, K.B., 2014. Pierce’s disease costs California $104 million
per year. Cal Ag 68, 20–29. https://doi.org/10.3733/ca.v068n01p20.

Urvois, T., Auger-Rozenberg, M.A., Roques, A., Rossi, J.P., Kerdelhue, C., 2021. Climate
change impact on the potential geographical distribution of two invading Xylosandrus am-
brosia beetles. Sci. Rep. 11, 1339. https://doi.org/10.1038/s41598-020-80157-9.

VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., Storlie, C., 2014. SDMTools: species dis-
tribution modelling tools: tools for processing data associated with species distribution
modelling exercises. R package version 1.1-221 https://CRAN.R-project.org/package=
SDMTools.

Varela, S., Anderson, R.P., García-Valdés, R., Fernández-González, F., 2014. Environmental fil-
ters reduce the effects of sampling bias and improve predictions of ecological niche
models. Ecography 37, 1084–1091. https://doi.org/10.1111/j.1600-0587.2013.00441.
x.

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J.,
Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D.,
Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J.,
Deshayes, J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G.,
Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., Waldman, R.,
2019. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model.
Earth Syst. 11, 2177–2213. https://doi.org/10.1029/2019MS001683.

Vollering, J., Halvorsen, R., Mazzoni, S., 2019. The MIAmaxent R package: variable transfor-
mation and model selection for species distribution models. Ecol. Evol. 9, 12051–12068.
https://doi.org/10.1002/ece3.5654.

Wakie, T.T., Neven, L.G., Yee, W.L., Lu, Z., 2020. The establishment risk of Lycorma delicatula
(Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113,
306–314. https://doi.org/10.1093/jee/toz259.

Wallingford, P.D., Morelli, T.L., Allen, J.M., Beaury, E.M., Blumenthal, D.M., Bradley, B.A.,
Dukes, J.S., Early, R., Fusco, E.J., Goldberg, D.E., Ibáñez, I., Laginhas, B.B., Vilà, M.,
Sorte, C.J.B., 2020. Adjusting the lens of invasion biology to focus on the impacts of
climate-driven range shifts. Nat. Clim. Chang. 10, 398–405. https://doi.org/10.1038/
s41558-020-0768-2.

Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conserva-
tism: quantitative approaches to niche evolution. Evolution 62, 2868–2883. https://doi.
org/10.1111/j.1558-5646.2008.00482.x.

Wells, J.M., 1983. Isolation, culture, and pathogenicity of the bacterium causing phony dis-
ease of peach. Phytopathology 73, 859. https://doi.org/10.1094/Phyto-73-859.

Westley, P.A.H., 2011. What invasive species reveal about the rate and form of contemporary
phenotypic change in nature. Am. Nat. 177, 496–509. https://doi.org/10.1086/658902.

Whetton, P., Hennessy, K., Clarke, J., McInnes, K., Kent, D., 2012. Use of representative cli-
mate futures in impact and adaptation assessment. Clim. Chang. 115, 433–442. https://
doi.org/10.1007/s10584-012-0471-z.

White, E.M., Wilson, J.C., Clarke, A.R., 2006. Biotic indirect effects: a neglected concept in in-
vasion biology. Divers. Distrib. 12, 443–455. https://doi.org/10.1111/j.1366-9516.
2006.00265.x.

Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F.,
Zhang, Yanwu, Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, Xiangwen, Wei, M., Huang,
A., Zhang, Yaocun, Liu, Xiaohong, 2019. The Beijing Climate Center Climate System
Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12,
1573–1600. https://doi.org/10.5194/gmd-12-1573-2019.

Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Campbell Grant, E.H.,
Veran, S., 2013. Presence-only modelling using MAXENT: when can we trust the infer-
ences? Methods Ecol. Evol. 4, 236–243. https://doi.org/10.1111/2041-210x.12004.

http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0315
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0315
https://doi.org/10.1111/ddi.13232
https://doi.org/10.5194/gmd-13-3571-2020
https://doi.org/10.1002/ece3.5938
https://doi.org/10.1016/j.tree.2007.11.005
https://doi.org/10.1007/s10530-007-9172-3
https://doi.org/10.1007/s10530-007-9172-3
https://doi.org/10.1111/geb.12530
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1111/brv.12627
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1111/j.1440-6055.2011.00856.x
https://doi.org/10.1007/s10530-015-0924-1
https://doi.org/10.1007/s10530-019-02156-w
https://doi.org/10.1007/s10530-019-02156-w
https://doi.org/10.1146/annurev.ento.49.061802.123403
https://doi.org/10.1146/annurev.ento.49.061802.123403
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1525/bio.2011.61.4.11
https://doi.org/10.11646/zootaxa.5116.3.8
https://doi.org/10.1175/JCLI-D-14-00362.1
https://doi.org/10.1175/JCLI-D-14-00362.1
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0405
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0405
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0405
https://doi.org/10.1073/pnas.1912206117
https://doi.org/10.1073/pnas.1912206117
https://doi.org/10.1029/2019MS001791
https://doi.org/10.2151/sola.2021-009
https://doi.org/10.2151/sola.2021-009
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0425
http://refhub.elsevier.com/S0048-9697(22)07477-0/rf0425
https://doi.org/10.1038/s41598-021-90378-1
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.5194/gmd-12-2727-2019
https://doi.org/10.1038/s41467-019-09519-w
https://doi.org/10.1038/s41467-019-09519-w
https://doi.org/10.3733/ca.v068n01p20
https://doi.org/10.1038/s41598-020-80157-9
https://CRAN.R-project.org/package=SDMTools
https://CRAN.R-project.org/package=SDMTools
https://doi.org/10.1111/j.1600-0587.2013.00441.x
https://doi.org/10.1111/j.1600-0587.2013.00441.x
https://doi.org/10.1029/2019MS001683
https://doi.org/10.1002/ece3.5654
https://doi.org/10.1093/jee/toz259
https://doi.org/10.1038/s41558-020-0768-2
https://doi.org/10.1038/s41558-020-0768-2
https://doi.org/10.1111/j.1558-5646.2008.00482.x
https://doi.org/10.1111/j.1558-5646.2008.00482.x
https://doi.org/10.1094/Phyto-73-859
https://doi.org/10.1086/658902
https://doi.org/10.1007/s10584-012-0471-z
https://doi.org/10.1007/s10584-012-0471-z
https://doi.org/10.1111/j.1366-9516.2006.00265.x
https://doi.org/10.1111/j.1366-9516.2006.00265.x
https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.1111/2041-210x.12004

	Climate change and the potential distribution of the glassy-�winged sharpshooter (Homalodisca vitripennis), an insect vecto...
	1. Introduction
	2. Material and methods
	2.1. Occurrence datasets
	2.2. Climate datasets
	2.2.1. Current conditions
	2.2.2. Future climate

	2.3. Climate descriptors
	2.4. Model algorithm and calibration
	2.5. Background points
	2.6. Model evaluation
	2.7. Forecasting future distribution of H. vitripennis

	3. Results
	3.1. Variable selection and model calibration
	3.2. Model performance
	3.3. Forecasting future climate suitability
	3.4. Variability of climate suitability according to GCM
	3.5. Worldwide maps

	4. Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References




